Rational Normal Forms and Stability of Small Solutions to Nonlinear Schrödinger Equations

被引:0
|
作者
Joackim Bernier
Erwan Faou
Benoît Grébert
机构
[1] Univ Rennes,
[2] INRIA,undefined
[3] CNRS,undefined
[4] Laboratoire de Mathématiques Jean Leray,undefined
[5] Université de Nantes,undefined
[6] UMR CNRS 6629,undefined
来源
Annals of PDE | 2020年 / 6卷
关键词
Birkhoff normal form; Resonances; Hamiltonian PDEs; 37K55; 35B40; 35Q55;
D O I
暂无
中图分类号
学科分类号
摘要
We consider general classes of nonlinear Schrödinger equations on the circle with nontrivial cubic part and without external parameters. We construct a new type of normal forms, namely rational normal forms, on open sets surrounding the origin in high Sobolev regularity. With this new tool we prove that, given a large constant M and a sufficiently small parameter ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}, for generic initial data of size ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}, the flow is conjugated to an integrable flow up to an arbitrary small remainder of order εM+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon ^{M+1}$$\end{document}. This implies that for such initial data u(0) we control the Sobolev norm of the solution u(t) for time of order ε-M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon ^{-M}$$\end{document}. Furthermore this property is locally stable: if v(0) is sufficiently close to u(0) (of order ε3/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon ^{3/2}$$\end{document}) then the solution v(t) is also controled for time of order ε-M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon ^{-M}$$\end{document}.
引用
收藏
相关论文
共 50 条