Substantial and formal deductions in logics with vector semantics

被引:0
|
作者
L. V. Arshinskii
机构
[1] The East-Siberian Institute of the Ministry of Internal Affairs of Russia,
来源
关键词
07.05.Mh;
D O I
暂无
中图分类号
学科分类号
摘要
The problem of logic deduction for one class of logics with a vector semantics is discussed. In the given logics the trustiness is represented by a vector with components 〈Truth; Lie〉, which do not depend on each other. The problem of organization of “substantial” and “formal” deductions is considered. In the first case the meaning of truth (semantics) of judgements is taken into account, whereas in the second case only the structure of judgements (syntax) is considered.
引用
收藏
页码:139 / 148
页数:9
相关论文
共 50 条
  • [21] Modular semantics and logics of classes
    Reus, B
    COMPUTER SCIENCE LOGIC, PROCEEDINGS, 2003, 2803 : 456 - 469
  • [22] Matrix semantics for annotated logics
    Lewin, RA
    Mikenberg, IF
    Schwarze, MG
    MODELS, ALGEBRAS, AND PROOFS, 1999, 203 : 279 - 293
  • [23] Fibring logics with topos semantics
    Coniglio, ME
    Sernadas, AC
    Sernadas, CS
    JOURNAL OF LOGIC AND COMPUTATION, 2003, 13 (04) : 595 - 624
  • [24] ALTERNATIVE SEMANTICS FOR TEMPORAL LOGICS
    EMERSON, EA
    THEORETICAL COMPUTER SCIENCE, 1983, 26 (1-2) : 121 - 130
  • [25] Algebraic Semantics for Hybrid Logics
    Conradie, Willem
    Robinson, Claudette
    NONCLASSICAL LOGICS AND THEIR APPLICATIONS, 2020, : 123 - 154
  • [26] Cone Semantics for Logics with Negation
    Oezcep, Oezguer Luetfue
    Leemhuis, Mena
    Wolter, Diedrich
    PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, : 1820 - 1826
  • [27] On fibring semantics for BDI logics
    Governatori, G
    Padmanabhan, V
    Sattar, A
    LOGICS IN ARTIFICIAL INTELLIGENCE 8TH, 2002, 2424 : 198 - 210
  • [28] Kripke semantics for fuzzy logics
    Parvin Safari
    Saeed Salehi
    Soft Computing, 2018, 22 : 839 - 844
  • [29] A COMPLETE SEMANTICS FOR IMPLICATIONAL LOGICS
    KIRK, RE
    ZEITSCHRIFT FUR MATHEMATISCHE LOGIK UND GRUNDLAGEN DER MATHEMATIK, 1981, 27 (04): : 381 - 383
  • [30] HIERARCHICAL SEMANTICS FOR RELEVANT LOGICS
    BRADY, RT
    JOURNAL OF PHILOSOPHICAL LOGIC, 1992, 21 (04) : 357 - 374