Cone Semantics for Logics with Negation

被引:0
|
作者
Oezcep, Oezguer Luetfue [1 ]
Leemhuis, Mena [1 ]
Wolter, Diedrich [2 ]
机构
[1] Univ Lubeck, Lubeck, Germany
[2] Univ Bamberg, Bamberg, Germany
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents an embedding of ontologies expressed in the ALC description logic into a real-valued vector space, comprising restricted existential and universal quantifiers, as well as concept negation and concept disjunction. Our main result states that an ALC ontology is satisfiable in the classical sense iff it is satisfiable by a partial faithful geometric model based on cones. The line of work to which we contribute aims to integrate knowledge representation techniques and machine learning. The new cone-model of ALC proposed in this work gives rise to conic optimization techniques for machine learning, extending previous approaches by its ability to model full ALC.
引用
收藏
页码:1820 / 1826
页数:7
相关论文
共 50 条
  • [1] A GENERAL SEMANTICS FOR LOGICS OF AFFIRMATION AND NEGATION
    Schang, Fabien
    JOURNAL OF APPLIED LOGICS-IFCOLOG JOURNAL OF LOGICS AND THEIR APPLICATIONS, 2021, 8 (02): : 593 - 620
  • [2] A general semantics for logics of affirmation and negation
    Schang, Fabien
    Journal of Applied Logics, 2021, 8 (02): : 593 - 620
  • [3] Logics with Probabilistic Team Semantics and the Boolean Negation
    Hannula, Miika
    Hirvonen, Minna
    Kontinen, Juha
    Mahmood, Yasir
    Meier, Arne
    Virtema, Jonni
    LOGICS IN ARTIFICIAL INTELLIGENCE, JELIA 2023, 2023, 14281 : 665 - 680
  • [4] Logics with probabilistic team semantics and the Boolean negation
    Hannula, Miika
    Hirvonen, Minna
    Kontinen, Juha
    Mahmood, Yasir
    Meier, Arne
    Virtema, Jonni
    JOURNAL OF LOGIC AND COMPUTATION, 2025, 35 (03)
  • [5] Bisimulations for Fuzzy Description Logics with Involutive Negation Under the Godel Semantics
    Linh Anh Nguyen
    Ngoc Thanh Nguyen
    COMPUTATIONAL COLLECTIVE INTELLIGENCE, PT I, 2019, 11683 : 16 - 30
  • [6] Negation and Paraconsistent Logics
    Dutta, Soma
    Chakraborty, Mihir K.
    LOGICA UNIVERSALIS, 2011, 5 (01) : 165 - 176
  • [7] KATZ ON SEMANTICS OF NEGATION
    PATTON, TE
    JOURNAL OF PHILOSOPHY, 1968, 65 (08): : 213 - 231
  • [8] THE SEMANTICS OF NEGATION IN FRENCH
    RITZ, ME
    LANGUE FRANCAISE, 1993, (98): : 67 - 78
  • [9] Interval negation in fuzzy logics
    Kim, Eunjin
    Kohout, Ladislav J.
    NAFIPS 2007 - 2007 ANNUAL MEETING OF THE NORTH AMERICAN FUZZY INFORMATION PROCESSING SOCIETY, 2007, : 537 - +
  • [10] MODAL LOGICS WITHOUT NEGATION
    SCHUMM, GF
    EDELSTEIN, R
    JOURNAL OF SYMBOLIC LOGIC, 1978, 43 (03) : 615 - 615