Interval negation in fuzzy logics

被引:2
|
作者
Kim, Eunjin [1 ]
Kohout, Ladislav J. [1 ]
机构
[1] Univ N Dakota, Dept Comp Sci, Grand Forks, ND 58202 USA
关键词
D O I
10.1109/NAFIPS.2007.383897
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper continues investigation of systems of fuzzy interval logics based on the Checklist Paradigm semantics of Bandler and Kohout. The paper looks at the alternative negations that may appear in the interval system m(1). In the previous papers dealing with checklist paradigm based interval systems the 2ary connectives were the interval connectives but the negation was just a point, 1 - a, not an interval. In this paper we look at genuine interval pairs of negations in system m(1). We compare negations generated by the Sheffer (NAND), the Nicod (NOR) and the implication connectives. We can see that each of these connectives defines a different negation, unlike in the case of 2-valued logic.
引用
收藏
页码:537 / +
页数:3
相关论文
共 50 条
  • [1] Fuzzy logics with an additional involutive negation
    Cintula, Petr
    Klement, Erich Peter
    Mesiar, Radko
    Navara, Mirko
    FUZZY SETS AND SYSTEMS, 2010, 161 (03) : 390 - 411
  • [2] Residuated fuzzy logics with an involutive negation
    Francesc Esteva
    Lluís Godo
    Petr Hájek
    Mirko Navara
    Archive for Mathematical Logic, 2000, 39 : 103 - 124
  • [3] Residuated fuzzy logics with an involutive negation
    Esteva, F
    Godo, L
    Hájek, P
    Navara, M
    ARCHIVE FOR MATHEMATICAL LOGIC, 2000, 39 (02) : 103 - 124
  • [4] Negation and Paraconsistent Logics
    Dutta, Soma
    Chakraborty, Mihir K.
    LOGICA UNIVERSALIS, 2011, 5 (01) : 165 - 176
  • [5] Bisimulations for Fuzzy Description Logics with Involutive Negation Under the Godel Semantics
    Linh Anh Nguyen
    Ngoc Thanh Nguyen
    COMPUTATIONAL COLLECTIVE INTELLIGENCE, PT I, 2019, 11683 : 16 - 30
  • [6] Fuzzy Halpern and Shoham's interval temporal logics
    Conradie, Willem
    Della Monica, Dario
    Munoz-Velasco, Emilio
    Sciavicco, Guido
    Stan, Ionel Eduard
    FUZZY SETS AND SYSTEMS, 2023, 456 : 107 - 124
  • [7] MODAL LOGICS WITHOUT NEGATION
    SCHUMM, GF
    EDELSTEIN, R
    JOURNAL OF SYMBOLIC LOGIC, 1978, 43 (03) : 615 - 615
  • [8] Logics of the negation The hegelian revealing
    Mabille, Bernard
    REVUE PHILOSOPHIQUE DE LOUVAIN, 2014, 112 (04) : 615 - 632
  • [9] Cone Semantics for Logics with Negation
    Oezcep, Oezguer Luetfue
    Leemhuis, Mena
    Wolter, Diedrich
    PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, : 1820 - 1826
  • [10] NEGATION IN METACOMPLETE RELEVANT LOGICS
    Brady, Ross T.
    LOGIQUE ET ANALYSE, 2008, (204) : 331 - 354