Interval negation in fuzzy logics

被引:2
|
作者
Kim, Eunjin [1 ]
Kohout, Ladislav J. [1 ]
机构
[1] Univ N Dakota, Dept Comp Sci, Grand Forks, ND 58202 USA
关键词
D O I
10.1109/NAFIPS.2007.383897
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper continues investigation of systems of fuzzy interval logics based on the Checklist Paradigm semantics of Bandler and Kohout. The paper looks at the alternative negations that may appear in the interval system m(1). In the previous papers dealing with checklist paradigm based interval systems the 2ary connectives were the interval connectives but the negation was just a point, 1 - a, not an interval. In this paper we look at genuine interval pairs of negations in system m(1). We compare negations generated by the Sheffer (NAND), the Nicod (NOR) and the implication connectives. We can see that each of these connectives defines a different negation, unlike in the case of 2-valued logic.
引用
收藏
页码:537 / +
页数:3
相关论文
共 50 条
  • [41] FUZZY PROPOSITIONAL LOGICS
    GOTTWALD, S
    FUZZY SETS AND SYSTEMS, 1980, 3 (02) : 181 - 192
  • [42] On Fuzzy Description Logics
    Garcia-Cerdana, Angel
    Esteva, Francesc
    ARTIFICIAL INTELLIGENCE RESEARCH AND DEVELOPMENT, 2008, 184 : 411 - +
  • [43] Fuzzy logics with modalities
    Zeevald O.V.
    Algebra and Logic, 2006, 45 (6) : 415 - 430
  • [44] Fuzzy Logics and Fuzzy Model Theory
    Pal'chunov, D. E.
    Yakhyaeva, G. E.
    ALGEBRA AND LOGIC, 2015, 54 (01) : 74 - 80
  • [45] Fuzzy modal logics
    Mironov A.M.
    Journal of Mathematical Sciences, 2005, 128 (6) : 3461 - 3483
  • [46] LATTICE FUZZY LOGICS
    EDMONDS, EA
    INTERNATIONAL JOURNAL OF MAN-MACHINE STUDIES, 1980, 13 (04): : 455 - 465
  • [47] Substructural fuzzy logics
    Metcalfe, George
    Montagna, Franco
    JOURNAL OF SYMBOLIC LOGIC, 2007, 72 (03) : 834 - 864
  • [48] Compactness of fuzzy logics
    Cintula, P
    Navara, M
    FUZZY SETS AND SYSTEMS, 2004, 143 (01) : 59 - 73
  • [49] Mathematical fuzzy logics
    Gottwald, Siegfried
    BULLETIN OF SYMBOLIC LOGIC, 2008, 14 (02) : 210 - 239
  • [50] Fuzzy Logics and Fuzzy Model Theory
    D. E. Pal’chunov
    G. E. Yakhyaeva
    Algebra and Logic, 2015, 54 : 74 - 80