Equivalence of the Euler Equation with a Variational Problem

被引:0
|
作者
B. Lani-Wayda
机构
[1] Mathematisches Institut der Universität Giessen,
[2] Arndtstr. 2,undefined
[3] D-35392 Giessen,undefined
[4] Germany,undefined
[5] e-mail: Bernhard.Lani-Wayda@math.uni-giessen.de ,undefined
关键词
Keywords. Lagrange functional, stationary points, C2 solutions of the Euler equation.;
D O I
暂无
中图分类号
学科分类号
摘要
We show in detail in which sense the following two properties of a time dependent, C2-smooth, divergence-free vector field v are equivalent:¶a) v satisfies the Euler equation of hydrodynamics (with some pressure function p)¶b) v is a stationary point of a suitable Lagrange functional.¶Important steps are the study of surjectivity properties of the derivative of the action functional, and the identification of vector fields orthogonal to the divergence-free fields as gradients, in the sense of classical differentiability. Thus, a foundation of the Euler equation from a variational principle is provided in a form which, to the author's knowledge, was not available so far.
引用
收藏
页码:388 / 408
页数:20
相关论文
共 50 条
  • [41] Formalization of Euler–Lagrange Equation Set Based on Variational Calculus in HOL Light
    Yong Guan
    Jingzhi Zhang
    Guohui Wang
    Ximeng Li
    Zhiping Shi
    Yongdong Li
    Journal of Automated Reasoning, 2021, 65 : 1 - 29
  • [42] THE HIGHER INTEGRABILITY AND THE VALIDITY OF THE EULER-LAGRANGE EQUATION FOR SOLUTIONS TO VARIATIONAL PROBLEMS
    Bonfanti, Giovanni
    Cellina, Arrigo
    Mazzola, Marco
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2012, 50 (02) : 888 - 899
  • [43] Periodic variational problem related with linear Reynolds equation
    Boldyrev, Yu.Ya.
    Izvestiya Akademii Nauk. Mekhanika Zhidkosti I Gaza, 1992, (02): : 3 - 10
  • [44] A variational method for a domain identification problem for a parabolic equation
    Hào, DN
    Brussel, VU
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ABSTRACT AND APPLIED ANALYSIS, 2004, : 125 - 138
  • [45] A half-linear differential equation and variational problem
    Mařík, Robert
    Nonlinear Analysis, Theory, Methods and Applications, 2001, 45 (02): : 203 - 211
  • [46] ON A SINGULAR BOUNDARY VALUE PROBLEM FOR EULER-DARBOUX EQUATION
    FRIEDLANDER, FG
    HEINS, AE
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1968, 4 (03) : 460 - +
  • [47] Darboux Problem for the Generalized Euler-Poisson-Darboux Equation
    Ismoilov, A. I.
    Mamanazarov, A. O.
    Urinov, A. K.
    UKRAINIAN MATHEMATICAL JOURNAL, 2017, 69 (01) : 62 - 84
  • [48] A half-linear differential equation and variational problem
    Marík, R
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 45 (02) : 203 - 211
  • [49] Variational iteration method for inverse problem of diffusion equation
    Yildirim, Ahmet
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, 2010, 26 (12) : 1713 - 1720
  • [50] A variational approach to a shape design problem for the wave equation
    Munch, Amaud
    Pedregal, Pablo
    Periago, Francisco
    COMPTES RENDUS MATHEMATIQUE, 2006, 343 (05) : 371 - 376