Equivalence of the Euler Equation with a Variational Problem

被引:0
|
作者
B. Lani-Wayda
机构
[1] Mathematisches Institut der Universität Giessen,
[2] Arndtstr. 2,undefined
[3] D-35392 Giessen,undefined
[4] Germany,undefined
[5] e-mail: Bernhard.Lani-Wayda@math.uni-giessen.de ,undefined
关键词
Keywords. Lagrange functional, stationary points, C2 solutions of the Euler equation.;
D O I
暂无
中图分类号
学科分类号
摘要
We show in detail in which sense the following two properties of a time dependent, C2-smooth, divergence-free vector field v are equivalent:¶a) v satisfies the Euler equation of hydrodynamics (with some pressure function p)¶b) v is a stationary point of a suitable Lagrange functional.¶Important steps are the study of surjectivity properties of the derivative of the action functional, and the identification of vector fields orthogonal to the divergence-free fields as gradients, in the sense of classical differentiability. Thus, a foundation of the Euler equation from a variational principle is provided in a form which, to the author's knowledge, was not available so far.
引用
收藏
页码:388 / 408
页数:20
相关论文
共 50 条
  • [31] Connection between the problem of variational calculus on the set of almost periodic functions and the Euler problem
    Voronetskaya, M. A.
    Ivanov, A. G.
    IZVESTIYA INSTITUTA MATEMATIKI I INFORMATIKI-UDMURTSKOGO GOSUDARSTVENNOGO UNIVERSITETA, 2006, (03): : 19 - 20
  • [32] Inverse variational problem for nonlinear equation in optics
    Tallukdar, B.
    INDIAN JOURNAL OF PHYSICS, 2006, 80 (05) : 501 - 504
  • [33] Darboux Problem for the Generalized Euler–Poisson–Darboux Equation
    A. I. Ismoilov
    A. O. Mamanazarov
    A. K. Urinov
    Ukrainian Mathematical Journal, 2017, 69 : 62 - 84
  • [36] ON ONE NONLOCAL PROBLEM FOR THE EULER-DARBOUX EQUATION
    Dolgopolov, M. V.
    Dolgopolov, V. M.
    Rodionova, I. N.
    VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2016, 20 (02): : 259 - 275
  • [37] On the Equivalence Between the Schrödinger Equation in Quantum Mechanics and the Euler-Bernoulli Equation in Elasticity Theory
    Volovich, Igor V.
    P-ADIC NUMBERS ULTRAMETRIC ANALYSIS AND APPLICATIONS, 2025, 17 (01) : 78 - 84
  • [38] Equivalence Problem for the Generalized Rapoport-Leas Equation
    Krasil'shchik, I. S.
    Morozov, O. I.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2024, 45 (10) : 4670 - 4678
  • [39] Formalization of Euler–Lagrange Equation Set Based on Variational Calculus in HOL Light
    Guan, Yong
    Zhang, Jingzhi
    Wang, Guohui
    Li, Ximeng
    Shi, Zhiping
    Li, Yongdong
    Journal of Automated Reasoning, 2020,
  • [40] VARIATIONAL PARTICLE SCHEMES FOR THE POROUS MEDIUM EQUATION AND FOR THE SYSTEM OF ISENTROPIC EULER EQUATIONS
    Westdickenberg, Michael
    Wilkening, Jon
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2010, 44 (01): : 133 - 166