Perfect graphs involving semitotal and semipaired domination

被引:0
|
作者
Teresa W. Haynes
Michael A. Henning
机构
[1] East Tennessee State University,Department of Mathematics and Statistics
[2] University of Johannesburg,Department of Pure and Applied Mathematics
来源
关键词
Paired-domination; Perfect graphs; Semipaired domination; Semitotal domination; 05C69;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a graph with vertex set V and no isolated vertices, and let S be a dominating set of V. The set S is a semitotal dominating set of G if every vertex in S is within distance 2 of another vertex of S. And, S is a semipaired dominating set of G if S can be partitioned into 2-element subsets such that the vertices in each 2-set are at most distance two apart. The semitotal domination number γt2(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _\mathrm{t2}(G)$$\end{document} is the minimum cardinality of a semitotal dominating set of G, and the semipaired domination number γpr2(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _\mathrm{pr2}(G)$$\end{document} is the minimum cardinality of a semipaired dominating set of G. For a graph without isolated vertices, the domination number γ(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma (G)$$\end{document}, the total domination γt(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _t(G)$$\end{document}, and the paired domination number γpr(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _\mathrm{pr}(G)$$\end{document} are related to the semitotal and semipaired domination numbers by the following inequalities: γ(G)≤γt2(G)≤γt(G)≤γpr(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma (G) \le \gamma _\mathrm{t2}(G) \le \gamma _t(G) \le \gamma _\mathrm{pr}(G)$$\end{document} and γ(G)≤γt2(G)≤γpr2(G)≤γpr(G)≤2γ(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma (G) \le \gamma _\mathrm{t2}(G) \le \gamma _\mathrm{pr2}(G) \le \gamma _\mathrm{pr}(G) \le 2\gamma (G)$$\end{document}. Given two graph parameters μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} and ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi $$\end{document} related by a simple inequality μ(G)≤ψ(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu (G) \le \psi (G)$$\end{document} for every graph G having no isolated vertices, a graph is (μ,ψ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mu ,\psi )$$\end{document}-perfect if every induced subgraph H with no isolated vertices satisfies μ(H)=ψ(H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu (H) = \psi (H)$$\end{document}. Alvarado et al. (Discrete Math 338:1424–1431, 2015) consider classes of (μ,ψ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mu ,\psi )$$\end{document}-perfect graphs, where μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} and ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi $$\end{document} are domination parameters including γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}, γt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _t$$\end{document} and γpr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _\mathrm{pr}$$\end{document}. We study classes of perfect graphs for the possible combinations of parameters in the inequalities when γt2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _\mathrm{t2}$$\end{document} and γpr2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _\mathrm{pr2}$$\end{document} are included in the mix. Our results are characterizations of several such classes in terms of their minimal forbidden induced subgraphs.
引用
收藏
页码:416 / 433
页数:17
相关论文
共 50 条
  • [31] Semitotal Domination in Claw-Free Cubic Graphs
    Enqiang Zhu
    Zehui Shao
    Jin Xu
    Graphs and Combinatorics, 2017, 33 : 1119 - 1130
  • [32] Semitotal Domination in Claw-Free Cubic Graphs
    Henning, Michael A.
    Marcon, Alister J.
    ANNALS OF COMBINATORICS, 2016, 20 (04) : 799 - 813
  • [33] Bounds on the semipaired domination number of graphs with minimum degree at least two
    Haynes, Teresa W.
    Henning, Michael A.
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2021, 41 (02) : 451 - 486
  • [34] Domination versus semipaired domination in trees
    Zhuang, Wei
    Hao, Guoliang
    QUAESTIONES MATHEMATICAE, 2020, 43 (11) : 1587 - 1600
  • [35] Perfect Domination, Roman Domination and Perfect Roman Domination in Lexicographic Product Graphs
    Cabrera Martinez, A.
    Garcia-Gomez, C.
    Rodriguez-Velazquez, J. A.
    FUNDAMENTA INFORMATICAE, 2022, 185 (03) : 201 - 220
  • [36] Bounds on the semipaired domination number of graphs with minimum degree at least two
    Teresa W. Haynes
    Michael A. Henning
    Journal of Combinatorial Optimization, 2021, 41 : 451 - 486
  • [37] Perfect Isolate Domination in Graphs
    Armada, Cris L.
    Hamja, Jamil J.
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2023, 16 (02): : 1326 - 1341
  • [38] Generalized perfect domination in graphs
    Chaluvaraju, B.
    Vidya, K. A.
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2014, 27 (02) : 292 - 301
  • [39] CLUSTERING AND DOMINATION IN PERFECT GRAPHS
    CORNEIL, DG
    PERL, Y
    DISCRETE APPLIED MATHEMATICS, 1984, 9 (01) : 27 - 39
  • [40] Roman domination perfect graphs
    Rad, Nader Jafari
    Volkmann, Lutz
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2011, 19 (03): : 167 - 174