Perfect graphs involving semitotal and semipaired domination

被引:0
|
作者
Teresa W. Haynes
Michael A. Henning
机构
[1] East Tennessee State University,Department of Mathematics and Statistics
[2] University of Johannesburg,Department of Pure and Applied Mathematics
来源
关键词
Paired-domination; Perfect graphs; Semipaired domination; Semitotal domination; 05C69;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a graph with vertex set V and no isolated vertices, and let S be a dominating set of V. The set S is a semitotal dominating set of G if every vertex in S is within distance 2 of another vertex of S. And, S is a semipaired dominating set of G if S can be partitioned into 2-element subsets such that the vertices in each 2-set are at most distance two apart. The semitotal domination number γt2(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _\mathrm{t2}(G)$$\end{document} is the minimum cardinality of a semitotal dominating set of G, and the semipaired domination number γpr2(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _\mathrm{pr2}(G)$$\end{document} is the minimum cardinality of a semipaired dominating set of G. For a graph without isolated vertices, the domination number γ(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma (G)$$\end{document}, the total domination γt(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _t(G)$$\end{document}, and the paired domination number γpr(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _\mathrm{pr}(G)$$\end{document} are related to the semitotal and semipaired domination numbers by the following inequalities: γ(G)≤γt2(G)≤γt(G)≤γpr(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma (G) \le \gamma _\mathrm{t2}(G) \le \gamma _t(G) \le \gamma _\mathrm{pr}(G)$$\end{document} and γ(G)≤γt2(G)≤γpr2(G)≤γpr(G)≤2γ(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma (G) \le \gamma _\mathrm{t2}(G) \le \gamma _\mathrm{pr2}(G) \le \gamma _\mathrm{pr}(G) \le 2\gamma (G)$$\end{document}. Given two graph parameters μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} and ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi $$\end{document} related by a simple inequality μ(G)≤ψ(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu (G) \le \psi (G)$$\end{document} for every graph G having no isolated vertices, a graph is (μ,ψ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mu ,\psi )$$\end{document}-perfect if every induced subgraph H with no isolated vertices satisfies μ(H)=ψ(H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu (H) = \psi (H)$$\end{document}. Alvarado et al. (Discrete Math 338:1424–1431, 2015) consider classes of (μ,ψ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mu ,\psi )$$\end{document}-perfect graphs, where μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} and ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi $$\end{document} are domination parameters including γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}, γt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _t$$\end{document} and γpr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _\mathrm{pr}$$\end{document}. We study classes of perfect graphs for the possible combinations of parameters in the inequalities when γt2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _\mathrm{t2}$$\end{document} and γpr2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _\mathrm{pr2}$$\end{document} are included in the mix. Our results are characterizations of several such classes in terms of their minimal forbidden induced subgraphs.
引用
收藏
页码:416 / 433
页数:17
相关论文
共 50 条
  • [21] Semitotal Domination in Graphs: Partition and Algorithmic Results
    Henning, Michael A.
    Marcon, Alister J.
    UTILITAS MATHEMATICA, 2018, 106 : 165 - 184
  • [22] GRAPHS WITH SEMITOTAL DOMINATION NUMBER HALF THEIR ORDER
    Chen, Jie
    Xu, Shou-Jun
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2024,
  • [23] INDEPENDENT SEMITOTAL DOMINATION IN THE LEXICOGRAPHIC PRODUCT OF GRAPHS
    Susada, Bryan L.
    Eballe, Rolito G.
    ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS, 2023, 39 (02): : 237 - 244
  • [24] Maximal outerplanar graphs with semipaired domination number double the domination number
    Henning, Michael A.
    Kaemawichanurat, Pawaton
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2024,
  • [25] SEMITOTAL DOMINATION IN CLAW-FREE GRAPHS
    Chen, Jie
    Liang, Yi-Ping
    Xu, Shou-Jun
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2024, 44 (04) : 1585 - 1605
  • [26] Semipaired Domination in Claw-Free Cubic Graphs
    Henning, Michael A.
    Kaemawichanurat, Pawaton
    GRAPHS AND COMBINATORICS, 2018, 34 (04) : 819 - 844
  • [27] Semitotal Domination in Claw-Free Cubic Graphs
    Zhu, Enqiang
    Shao, Zehui
    Xu, Jin
    GRAPHS AND COMBINATORICS, 2017, 33 (05) : 1119 - 1130
  • [28] Semipaired Domination in Claw-Free Cubic Graphs
    Michael A. Henning
    Pawaton Kaemawichanurat
    Graphs and Combinatorics, 2018, 34 : 819 - 844
  • [29] 2-OUTER-INDEPENDENT SEMITOTAL DOMINATION IN GRAPHS
    Canoy, Sergio R., Jr.
    Aradais, Alkajim A.
    ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS, 2022, 31 : 67 - 85
  • [30] Semitotal Domination in Claw-Free Cubic Graphs
    Michael A. Henning
    Alister J. Marcon
    Annals of Combinatorics, 2016, 20 : 799 - 813