Perfect graphs involving semitotal and semipaired domination

被引:0
|
作者
Teresa W. Haynes
Michael A. Henning
机构
[1] East Tennessee State University,Department of Mathematics and Statistics
[2] University of Johannesburg,Department of Pure and Applied Mathematics
来源
关键词
Paired-domination; Perfect graphs; Semipaired domination; Semitotal domination; 05C69;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a graph with vertex set V and no isolated vertices, and let S be a dominating set of V. The set S is a semitotal dominating set of G if every vertex in S is within distance 2 of another vertex of S. And, S is a semipaired dominating set of G if S can be partitioned into 2-element subsets such that the vertices in each 2-set are at most distance two apart. The semitotal domination number γt2(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _\mathrm{t2}(G)$$\end{document} is the minimum cardinality of a semitotal dominating set of G, and the semipaired domination number γpr2(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _\mathrm{pr2}(G)$$\end{document} is the minimum cardinality of a semipaired dominating set of G. For a graph without isolated vertices, the domination number γ(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma (G)$$\end{document}, the total domination γt(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _t(G)$$\end{document}, and the paired domination number γpr(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _\mathrm{pr}(G)$$\end{document} are related to the semitotal and semipaired domination numbers by the following inequalities: γ(G)≤γt2(G)≤γt(G)≤γpr(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma (G) \le \gamma _\mathrm{t2}(G) \le \gamma _t(G) \le \gamma _\mathrm{pr}(G)$$\end{document} and γ(G)≤γt2(G)≤γpr2(G)≤γpr(G)≤2γ(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma (G) \le \gamma _\mathrm{t2}(G) \le \gamma _\mathrm{pr2}(G) \le \gamma _\mathrm{pr}(G) \le 2\gamma (G)$$\end{document}. Given two graph parameters μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} and ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi $$\end{document} related by a simple inequality μ(G)≤ψ(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu (G) \le \psi (G)$$\end{document} for every graph G having no isolated vertices, a graph is (μ,ψ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mu ,\psi )$$\end{document}-perfect if every induced subgraph H with no isolated vertices satisfies μ(H)=ψ(H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu (H) = \psi (H)$$\end{document}. Alvarado et al. (Discrete Math 338:1424–1431, 2015) consider classes of (μ,ψ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mu ,\psi )$$\end{document}-perfect graphs, where μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} and ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi $$\end{document} are domination parameters including γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}, γt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _t$$\end{document} and γpr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _\mathrm{pr}$$\end{document}. We study classes of perfect graphs for the possible combinations of parameters in the inequalities when γt2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _\mathrm{t2}$$\end{document} and γpr2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _\mathrm{pr2}$$\end{document} are included in the mix. Our results are characterizations of several such classes in terms of their minimal forbidden induced subgraphs.
引用
收藏
页码:416 / 433
页数:17
相关论文
共 50 条
  • [1] Perfect graphs involving semitotal and semipaired domination
    Haynes, Teresa W.
    Henning, Michael A.
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2018, 36 (02) : 416 - 433
  • [2] On Semitotal Domination in Graphs
    Aniversario, Imelda S.
    Canoy, Sergio R., Jr.
    Jamil, Ferdinand P.
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2019, 12 (04): : 1410 - 1425
  • [3] Semitotal Domination in Graphs
    Goddard, Wayne
    Henning, Michael A.
    McPillan, Charles A.
    UTILITAS MATHEMATICA, 2014, 94 : 67 - 81
  • [4] Semitotal Roman Domination in Graphs
    Bullang, Brayan F.
    Aniversario, Imelda S.
    Aradais, Alkajim A.
    Jamil, Ferdinand P.
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2025, 18 (01):
  • [5] ISOLATE SEMITOTAL DOMINATION IN GRAPHS
    Aradais, Anuarisa A.
    Laja, Ladznar S.
    Aradais, Alkajim A.
    ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS, 2022, 32 : 55 - 62
  • [6] On matching and semitotal domination in graphs
    Henning, Michael A.
    Marcon, Alister J.
    DISCRETE MATHEMATICS, 2014, 324 : 13 - 18
  • [7] Complexity and Algorithms for Semipaired Domination in Graphs
    Henning, Michael A.
    Pandey, Arti
    Tripathi, Vikash
    THEORY OF COMPUTING SYSTEMS, 2020, 64 (07) : 1225 - 1241
  • [8] Independent semitotal domination in graphs
    Padmavathi, S. V.
    Manju, J. Sabari
    JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2024, 45 (01): : 145 - 156
  • [9] Semitotal domination of Harary graphs
    Kartal, Zeliha
    Aytac, Aysun
    TBILISI MATHEMATICAL JOURNAL, 2020, 13 (03) : 11 - 17
  • [10] Complexity and Algorithms for Semipaired Domination in Graphs
    Henning, Michael A.
    Pandey, Arti
    Tripathi, Vikash
    COMBINATORIAL ALGORITHMS, IWOCA 2019, 2019, 11638 : 278 - 289