Lattice Embeddings of Planar Point Sets

被引:0
|
作者
Michael Knopf
Jesse Milzman
Derek Smith
Dantong Zhu
Dara Zirlin
机构
[1] University of California,
[2] Berkeley,undefined
[3] University of Maryland,undefined
[4] Lafayette College,undefined
[5] Georgia Institute of Technology,undefined
[6] University of Illinois,undefined
[7] Urbana-Champaign,undefined
来源
关键词
Lattice embedding; Heronian triangle; -Cluster; Ring of integers; Maximal order; Imaginary quadratic extension; 52C10; 52C05; 11Z05; 11R11; 11R04;
D O I
暂无
中图分类号
学科分类号
摘要
Let M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document} be a finite non-collinear set of points in the Euclidean plane, with the squared distance between each pair of points integral. Considering the points as lying in the complex plane, there is at most one positive square-free integer D, called the “characteristic” of M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document}, such that a congruent copy of M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document} embeds in Q(-D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Q}(\sqrt{-D})$$\end{document}. We generalize the work of Yiu and Fricke on embedding point sets in Z2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}^2$$\end{document} by providing conditions that characterize when M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document} embeds in the lattice corresponding to O-D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}_{-D}$$\end{document}, the ring of integers in Q(-D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Q}(\sqrt{-D})$$\end{document}. In particular, we show that if the square of every ideal in O-D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}_{-D}$$\end{document} is principal and the distance between at least one pair of points in M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document} is integral, then M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document} embeds in O-D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}_{-D}$$\end{document}. Moreover, if M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document} is primitive, so that the squared distances between pairs of points are relatively prime, and O-D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}_{-D}$$\end{document} is a principal ideal domain, then M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document} embeds in O-D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}_{-D}$$\end{document}.
引用
收藏
页码:693 / 710
页数:17
相关论文
共 50 条
  • [1] Lattice Embeddings of Planar Point Sets
    Knopf, Michael
    Milzman, Jesse
    Smith, Derek
    Zhu, Dantong
    Zirlin, Dara
    DISCRETE & COMPUTATIONAL GEOMETRY, 2016, 56 (03) : 693 - 710
  • [2] New inequalities for planar convex sets with lattice point constraints
    Awyong, PW
    Scott, PR
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1996, 54 (03) : 391 - 396
  • [3] ON PLANAR CONVEX-SETS CONTAINING ONE LATTICE POINT
    SCOTT, PR
    QUARTERLY JOURNAL OF MATHEMATICS, 1985, 36 (141): : 105 - 111
  • [4] ON LATTICE EMBEDDINGS FOR PARTIALLY ORDERED SETS
    BOTTS, T
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1954, 6 (04): : 525 - 528
  • [6] Some inequalities for planar convex sets containing one lattice point
    Hernandez, MA
    Gomis, SS
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1998, 58 (01) : 159 - 166
  • [7] AREA, WIDTH AND DIAMETER OF PLANAR CONVEX-SETS WITH LATTICE POINT CONSTRAINTS
    SCOTT, PR
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1983, 14 (04): : 444 - 448
  • [8] Width-diameter relations for planar convex sets with lattice point constraints
    Awyong, PW
    Scott, PR
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1996, 53 (03) : 469 - 478
  • [9] Upward Geometric Graph Embeddings into Point Sets
    Angelini, Patrizio
    Frati, Fabrizio
    Geyer, Markus
    Kaufmann, Michael
    Mchedlidze, Tamara
    Symvonis, Antonios
    GRAPH DRAWING, 2011, 6502 : 25 - +
  • [10] Planar embeddings with a globally attracting fixed point
    Alarcon, Begona
    Guinez, Victor
    Gutierrez, Carlos
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 69 (01) : 140 - 150