Real-time simulation of H–P noisy Schrödinger equation and Belavkin filter

被引:0
|
作者
Naman Garg
Harish Parthasarathy
D. K. Upadhyay
机构
[1] University of Delhi,Statistical Signal Processing Lab, Room No. 127, ECE Division, Netaji Subhas Institute of Technology
来源
关键词
H–P quantum Itô formula; Noisy Schrödinger equation; Gram–Schmidt orthonormalization; GKSL equation; Non-demolition measurements; Kushner–Belavkin quantum filter; Von Neumann entropy;
D O I
暂无
中图分类号
学科分类号
摘要
The Hudson–Parthasarathy noisy Schrödinger equation is an infinite-dimensional differential equation where the noise operators—Creation, Annihilation and Conservation processes—take values in Boson Fock space. We choose a finite truncated basis of exponential vectors for the Boson Fock space and obtained the unitary evolution in a truncated orthonormal basis using the Gram–Schmidt orthonormalization process to the exponential vectors. Then, this unitary evolution is used to obtained the approximate evolution of the system state by tracing out over the bath space. This approximate evolution is compared to the exact Gorini–Kossakowski–Sudarshan–Lindblad equation for the system state. We also perform a computation of the rate of change of the Von Neumann entropy for the system assuming vacuum noise state and derive condition for entropy increase. Finally, by taking non-demolition measurement in the sense of Belavkin, we simulate the Belavkin quantum filter and show that the Frobenius norm of the error observables jt(X)-πt(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$j_t(X)-\pi _t(X)$$\end{document} becomes smaller with time for a class of observable X. Here jt(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$j_t(X)$$\end{document} is the H–P equation observable and πt(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi _t(X)$$\end{document} is the Belavkin filter output observable. In last, we have derived an approximate expression for the filtered density and entropy of the system after filtering.
引用
收藏
相关论文
共 50 条
  • [1] Real-time simulation of H-P noisy Schrodinger equation and Belavkin filter
    Garg, Naman
    Parthasarathy, Harish
    Upadhyay, D. K.
    QUANTUM INFORMATION PROCESSING, 2017, 16 (05)
  • [2] The Doss Method for the Stochastic Schrödinger—Belavkin Equation
    A. A. Loboda
    Mathematical Notes, 2019, 106 : 303 - 307
  • [3] Time-fractional Schrödinger equation
    Hassan Emamirad
    Arnaud Rougirel
    Journal of Evolution Equations, 2020, 20 : 279 - 293
  • [4] Existence time for the semilinear Schrödinger equation
    Wei Mingjun
    Applied Mathematics-A Journal of Chinese Universities, 2003, 18 (1) : 30 - 34
  • [5] Several Numerical Simulation Methods for the Time-Dependent Schrödinger Equation
    Luo, Song
    Cao, Yanhua
    JOURNAL OF COMPUTATIONAL AND THEORETICAL TRANSPORT, 2024, 53 (02) : 69 - 88
  • [6] The velocity of a quantum particle in the case of real solutions of the time independent Schrödinger equation
    Feoli, A.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2024, 21 (13)
  • [7] Simulation of spatiotemporal light dynamics based on the time-dependent Schrödinger equation
    Richter, Maria
    Morales, Felipe
    Patchkovskii, Serguei
    Husakou, Anton
    OPTICS EXPRESS, 2023, 31 (24) : 39941 - 39952
  • [8] Memory effect in time fractional Schr?dinger equation
    祖传金
    余向阳
    Chinese Physics B, 2024, (02) : 253 - 258
  • [9] On the Derivation of the Time-Dependent Equation of Schrödinger
    John S. Briggs
    Jan M. Rost
    Foundations of Physics, 2001, 31 : 693 - 712
  • [10] A Schrödinger equation with time-oscillating nonlinearity
    Thierry Cazenave
    Márcia Scialom
    Revista Matemática Complutense, 2010, 23 : 321 - 339