Several Numerical Simulation Methods for the Time-Dependent Schrödinger Equation

被引:0
|
作者
Luo, Song [1 ]
Cao, Yanhua [1 ]
机构
[1] East China Jiaotong Univ, Sch Sci, Nanchang, Jiangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Schrodinger equation; Houbolt difference format; Meshless methods; FUNCTION COLLOCATION METHOD; VARIABLE STEP METHOD; SCHRODINGER-EQUATION; SPACE-TIME; INTEGRATION;
D O I
10.1080/23324309.2024.2307541
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The time-dependent Schrodinger equation can be solved using the Houbolt difference scheme or the space-time polynomial particular solutions method, with the former performing well in dissipative problems and the latter being suitable for wave-like problems. To handle variations in time-step sizes while overcoming numerical oscillations in non-smooth regions, these two methods are coupled. The time-domain is handled using the Houbolt difference format, while the spatial domain is handled using the method of polynomial particular solutions. The numerical results show that the advantages of each method are preserved. Additionally, this hybrid approach can be replaced with other difference methods and meshless methods to meet various numerical solution needs.
引用
下载
收藏
页码:69 / 88
页数:20
相关论文
共 50 条
  • [1] On the Derivation of the Time-Dependent Equation of Schrödinger
    John S. Briggs
    Jan M. Rost
    Foundations of Physics, 2001, 31 : 693 - 712
  • [2] Simulation of spatiotemporal light dynamics based on the time-dependent Schrödinger equation
    Richter, Maria
    Morales, Felipe
    Patchkovskii, Serguei
    Husakou, Anton
    OPTICS EXPRESS, 2023, 31 (24) : 39941 - 39952
  • [3] Solution to the Schrödinger Equation for the Time-Dependent Potential
    Chao-Yun Long
    Shui-Jie Qin
    Zhu-Hua Yang
    Guang-Jie Guo
    International Journal of Theoretical Physics, 2009, 48 : 981 - 985
  • [4] Exponential fitting method for the time-dependent Schrödinger equation
    M. Rizea
    Journal of Mathematical Chemistry, 2010, 48 : 55 - 65
  • [5] Analysis of the “Toolkit” Method for the Time-Dependent Schrödinger Equation
    Lucie Baudouin
    Julien Salomon
    Gabriel Turinici
    Journal of Scientific Computing, 2011, 49 : 111 - 136
  • [6] Solution of the Schrödinger equation for the time-dependent linear potential
    Materials Science Division, Argonne National Laboratory, Argonne, IL 60439, United States
    Physical Review A. Atomic, Molecular, and Optical Physics, 2001, 63 (03): : 341021 - 341023
  • [7] Fractional time-dependent Schrödinger equation on the Heisenberg group
    Roman Urban
    Jacek Zienkiewicz
    Mathematische Zeitschrift, 2008, 260 : 931 - 948
  • [8] Solutions to the time-dependent schrödinger equations by inversion methods
    E. P. Velicheva
    Physics of Atomic Nuclei, 2000, 63 : 661 - 663
  • [9] Tenth-Order Accurate Numerical Method for Solving the Time-Dependent Schrödinger Equation
    M. A. Zakharov
    Computational Mathematics and Mathematical Physics, 2024, 64 : 248 - 265
  • [10] New methods to solve the resonant nonlinear Schrödinger’s equation with time-dependent coefficients
    Mehdi Fazli Aghdaei
    Hojatollah Adibi
    Optical and Quantum Electronics, 2017, 49