Real-time simulation of H–P noisy Schrödinger equation and Belavkin filter

被引:0
|
作者
Naman Garg
Harish Parthasarathy
D. K. Upadhyay
机构
[1] University of Delhi,Statistical Signal Processing Lab, Room No. 127, ECE Division, Netaji Subhas Institute of Technology
来源
关键词
H–P quantum Itô formula; Noisy Schrödinger equation; Gram–Schmidt orthonormalization; GKSL equation; Non-demolition measurements; Kushner–Belavkin quantum filter; Von Neumann entropy;
D O I
暂无
中图分类号
学科分类号
摘要
The Hudson–Parthasarathy noisy Schrödinger equation is an infinite-dimensional differential equation where the noise operators—Creation, Annihilation and Conservation processes—take values in Boson Fock space. We choose a finite truncated basis of exponential vectors for the Boson Fock space and obtained the unitary evolution in a truncated orthonormal basis using the Gram–Schmidt orthonormalization process to the exponential vectors. Then, this unitary evolution is used to obtained the approximate evolution of the system state by tracing out over the bath space. This approximate evolution is compared to the exact Gorini–Kossakowski–Sudarshan–Lindblad equation for the system state. We also perform a computation of the rate of change of the Von Neumann entropy for the system assuming vacuum noise state and derive condition for entropy increase. Finally, by taking non-demolition measurement in the sense of Belavkin, we simulate the Belavkin quantum filter and show that the Frobenius norm of the error observables jt(X)-πt(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$j_t(X)-\pi _t(X)$$\end{document} becomes smaller with time for a class of observable X. Here jt(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$j_t(X)$$\end{document} is the H–P equation observable and πt(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi _t(X)$$\end{document} is the Belavkin filter output observable. In last, we have derived an approximate expression for the filtered density and entropy of the system after filtering.
引用
收藏
相关论文
共 50 条
  • [31] Time-fractional discrete diffusion equation for Schrödinger operator
    Dasgupta, Aparajita
    Mondal, Shyam Swarup
    Ruzhansky, Michael
    Tushir, Abhilash
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2024, 27 (06) : 3208 - 3239
  • [32] Analysis of the “Toolkit” Method for the Time-Dependent Schrödinger Equation
    Lucie Baudouin
    Julien Salomon
    Gabriel Turinici
    Journal of Scientific Computing, 2011, 49 : 111 - 136
  • [33] Exact solutions for the quintic nonlinear Schrödinger equation with time and space
    Si-Liu Xu
    Nikola Petrović
    Milivoj R. Belić
    Wenwu Deng
    Nonlinear Dynamics, 2016, 84 : 251 - 259
  • [34] A space–time DG method for the Schrödinger equation with variable potential
    Sergio Gómez
    Andrea Moiola
    Advances in Computational Mathematics, 2024, 50
  • [35] Solution of the Schrödinger equation for the time-dependent linear potential
    Materials Science Division, Argonne National Laboratory, Argonne, IL 60439, United States
    Physical Review A. Atomic, Molecular, and Optical Physics, 2001, 63 (03): : 341021 - 341023
  • [36] Long Time Anderson Localization for the Nonlinear Random Schrödinger Equation
    W.-M. Wang
    Zhifei Zhang
    Journal of Statistical Physics, 2009, 134 : 953 - 968
  • [37] Fractional time-dependent Schrödinger equation on the Heisenberg group
    Roman Urban
    Jacek Zienkiewicz
    Mathematische Zeitschrift, 2008, 260 : 931 - 948
  • [38] Coarse-Gridded Simulation of the Nonlinear Schrödinger Equation with Machine Learning
    Akers, Benjamin F.
    Williams, Kristina O. F.
    MATHEMATICS, 2024, 12 (17)
  • [39] Space-Time Fractional Schrödinger Equation With Composite Time Fractional Derivative
    Johan L. A. Dubbeldam
    Zivorad Tomovski
    Trifce Sandev
    Fractional Calculus and Applied Analysis, 2015, 18 : 1179 - 1200
  • [40] A Hölder stability estimate for inverse problems for the ultrahyperbolic Schrödinger equation
    Fikret Gölgeleyen
    Özlem Kaytmaz
    Analysis and Mathematical Physics, 2019, 9 : 2171 - 2199