We establish some existence results for the Brezis-Nirenberg type problem of the nonlinear Choquard equation −Δu=(∫Ω|u(y)|2μ*|x−y|μdy)|u|2μ*−2u+λuinΩ,\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ - \Delta u = \left( {\int_\Omega {\frac{{{{\left| {u\left( y \right)} \right|}^{2_\mu ^*}}}}{{{{\left| {x - y} \right|}^\mu }}}dy} } \right){\left| u \right|^{2_\mu ^* - 2}}u + \lambda uin\Omega ,$$\end{document}, where Ω is a bounded domain of RN with Lipschitz boundary, λ is a real parameter, N ≥ 3, 2μ*=(2N−μ)/(N−2)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$2_\mu ^* = \left( {2N - \mu } \right)/\left( {N - 2} \right)$$\end{document} is the critical exponent in the sense of the Hardy-Littlewood-Sobolev inequality.
机构:
Tsinghua Univ, Dept Math, Beijing 100084, Peoples R ChinaTsinghua Univ, Dept Math, Beijing 100084, Peoples R China
Guo, Yuxia
Liu, Jiaquan
论文数: 0引用数: 0
h-index: 0
机构:
Peking Univ, Sch Math, Beijing 100871, Peoples R ChinaTsinghua Univ, Dept Math, Beijing 100084, Peoples R China
Liu, Jiaquan
Wang, Zhi-Qiang
论文数: 0引用数: 0
h-index: 0
机构:
Tianjin Univ, Ctr Appl Math, Tianjin 300072, Peoples R China
Utah State Univ, Dept Math & Stat, Logan, UT 84322 USATsinghua Univ, Dept Math, Beijing 100084, Peoples R China
机构:
Osaka City Univ, Grad Sch Sci, Dept Math, Sumiyoshi Ku, Osaka, Osaka 5588585, JapanOsaka City Univ, Grad Sch Sci, Dept Math, Sumiyoshi Ku, Osaka, Osaka 5588585, Japan