The Brezis-Nirenberg type critical problem for the nonlinear Choquard equation

被引:0
|
作者
Fashun Gao
Minbo Yang
机构
[1] Zhejiang Normal University,Department of Mathematics
来源
Science China Mathematics | 2018年 / 61卷
关键词
Brezis-Nirenberg problem; Choquard equation; Hardy-Littlewood-Sobolev inequality; critical exponent; 35J25; 35J60; 35A15;
D O I
暂无
中图分类号
学科分类号
摘要
We establish some existence results for the Brezis-Nirenberg type problem of the nonlinear Choquard equation −Δu=(∫Ω|u(y)|2μ*|x−y|μdy)|u|2μ*−2u+λuinΩ,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ - \Delta u = \left( {\int_\Omega {\frac{{{{\left| {u\left( y \right)} \right|}^{2_\mu ^*}}}}{{{{\left| {x - y} \right|}^\mu }}}dy} } \right){\left| u \right|^{2_\mu ^* - 2}}u + \lambda uin\Omega ,$$\end{document}, where Ω is a bounded domain of RN with Lipschitz boundary, λ is a real parameter, N ≥ 3, 2μ*=(2N−μ)/(N−2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2_\mu ^* = \left( {2N - \mu } \right)/\left( {N - 2} \right)$$\end{document} is the critical exponent in the sense of the Hardy-Littlewood-Sobolev inequality.
引用
收藏
页码:1219 / 1242
页数:23
相关论文
共 50 条
  • [31] The effect of a perturbation on Brezis-Nirenberg's problem
    Faria, Luiz Fernando de Oliveira
    Silva, Jeferson Camilo
    Ubilla, Pedro
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2024,
  • [32] Positive solutions for a Kirchhoff problem of Brezis-Nirenberg type in dimension four
    Anello, Giovanni
    Vilasi, Luca
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2024, 251
  • [33] Double blow-up solutions for a Brezis-Nirenberg type problem
    Musso, M
    Pistoia, A
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2003, 5 (05) : 775 - 802
  • [34] A note on borderline Brezis-Nirenberg type problems
    Haddad, Julian
    Montenegro, Marcos
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 147 : 169 - 175
  • [35] The Brezis-Nirenberg problem near criticality in dimension 3
    del Pino, M
    Dolbeault, J
    Musso, M
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2004, 83 (12): : 1405 - 1456
  • [36] ON QUASILINEAR BREZIS-NIRENBERG TYPE PROBLEMS WITH WEIGHTS
    Garcia-Huidobro, Marta
    Yarer, Cecilia S.
    ADVANCES IN DIFFERENTIAL EQUATIONS, 2010, 15 (5-6) : 401 - 436
  • [37] The solution gap of the Brezis-Nirenberg problem on the hyperbolic space
    Benguria, Soledad
    MONATSHEFTE FUR MATHEMATIK, 2016, 181 (03): : 537 - 559
  • [38] Multispike solutions for the Brezis-Nirenberg problem in dimension three
    Musso, Monica
    Salazar, Dora
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 264 (11) : 6663 - 6709
  • [39] A sharp solvability condition in higher dimensions for some Brezis-Nirenberg type equation
    G. Adimurthi
    K. Mancini
    Calculus of Variations and Partial Differential Equations, 2002, 14 : 275 - 317
  • [40] New numerical solutions for the Brezis-Nirenberg problem on Sn
    Bandle, C
    Stingelin, S
    Elliptic and Parabolic Problems: A SPECIAL TRIBUTE TO THE WORK OF HAIM BREZIS, 2005, 63 : 13 - 21