Recursive parameter identification of the dynamical models for bilinear state space systems

被引:0
|
作者
Xiao Zhang
Feng Ding
Fuad E. Alsaadi
Tasawar Hayat
机构
[1] Jiangnan University,Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education)
[2] Qingdao University of Science and Technology,College of Automation and Electronic Engineering
[3] King Abdulaziz University,Department of Electrical and Computer Engineering, Faculty of Engineering
[4] Quaid-I-Azam University,Department of Mathematics
来源
Nonlinear Dynamics | 2017年 / 89卷
关键词
Dynamical system; Parameter estimation; State estimation; Multi-innovation theory; State space model; Bilinear system;
D O I
暂无
中图分类号
学科分类号
摘要
This paper investigates the recursive parameter and state estimation algorithms for a special class of nonlinear systems (i.e., bilinear state space systems). A state observer-based stochastic gradient (O-SG) algorithm is presented for the bilinear state space systems by using the gradient search. In order to improve the parameter estimation accuracy and the convergence rate of the O-SG algorithm, a state observer-based multi-innovation stochastic gradient algorithm and a state observer-based recursive least squares identification algorithm are derived by means of the multi-innovation theory. Finally, a numerical example is provided to demonstrate the effectiveness of the proposed algorithms.
引用
收藏
页码:2415 / 2429
页数:14
相关论文
共 50 条
  • [21] Hierarchical parameter and state estimation for bilinear systems
    Zhang, Xiao
    Ding, Feng
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2020, 51 (02) : 275 - 290
  • [22] Recursive parameter and state estimation for an input nonlinear state space system using the hierarchical identification principle
    Wang, Xuehai
    Ding, Feng
    SIGNAL PROCESSING, 2015, 117 : 208 - 218
  • [23] Sensitivity models for nonlinear filters with application to recursive parameter estimation for nonlinear state-space models
    Bohn, C
    Unbehauen, H
    IEE PROCEEDINGS-CONTROL THEORY AND APPLICATIONS, 2001, 148 (02): : 137 - 145
  • [24] Analysis of recursive MAP algorithm for state estimation of bilinear systems
    Krishnamurthy, V
    Yin, G
    PROCEEDINGS OF THE 39TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 2000, : 3799 - 3800
  • [25] On parameter identification for nonlinear dynamical systems
    Boguslavskii, IA
    Shcherbakov, VI
    JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL, 2001, 40 (06) : 854 - 860
  • [26] State observers for bilinear state-space systems
    Zhang X.
    Ding F.
    Kongzhi yu Juece/Control and Decision, 2023, 38 (01): : 274 - 280
  • [27] System Identification of Bilinear State-space Models by Modified Gradient Search Method
    Zhong Lusheng
    Fan Xiaoping
    Yang Hui
    PROCEEDINGS OF THE 29TH CHINESE CONTROL CONFERENCE, 2010, : 1282 - 1286
  • [28] ONLINE PARAMETER-IDENTIFICATION OF BILINEAR-SYSTEMS
    INAGAKI, M
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1982, 27 (04) : 984 - 986
  • [29] Multistage parameter estimation algorithms for identification of bilinear systems
    Fatemeh Shahriari
    Mohammad Mehdi Arefi
    Hao Luo
    Shen Yin
    Nonlinear Dynamics, 2022, 110 : 2635 - 2655
  • [30] Multistage parameter estimation algorithms for identification of bilinear systems
    Shahriari, Fatemeh
    Arefi, Mohammad Mehdi
    Luo, Hao
    Yin, Shen
    NONLINEAR DYNAMICS, 2022, 110 (03) : 2635 - 2655