Multistage parameter estimation algorithms for identification of bilinear systems

被引:0
|
作者
Fatemeh Shahriari
Mohammad Mehdi Arefi
Hao Luo
Shen Yin
机构
[1] Shiraz University,Department of Power and Control Engineering, School of Electrical and Computer Engineering
[2] Harbin Institute of Technology,Department of Control Science and Engineering, School of Astronautics
[3] Norwegian University of Science and Technology,Department of Mechanical and Industrial Engineering, Faculty of Engineering
来源
Nonlinear Dynamics | 2022年 / 110卷
关键词
Bilinear systems; Parameter estimation; Gradient search; Hierarchical identification;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, two methods for parameter estimation of bilinear state-space systems with colored noise, which are expressed by ARMA model, are proposed. Using the hierarchical identification principle and gradient method, to reduce the computational cost, both the four-stage recursive least squares algorithm and the four-stage stochastic gradient algorithm are exploited by which parameter estimation error is reduced and the speed of convergence of parameters is increased. In addition, a bilinear state observer for state estimation is designed to make use of the estimated states in the four-stage recursive least squares and the four-stage stochastic gradient algorithms. Finally, a numerical example and a practical example are provided to indicate the superiority of the proposed methods. The results show that due to the data length increase, the estimation error of the parameters is reduced. Furthermore, the estimated parameters converge to the actual values in a short time.
引用
收藏
页码:2635 / 2655
页数:20
相关论文
共 50 条
  • [1] Multistage parameter estimation algorithms for identification of bilinear systems
    Shahriari, Fatemeh
    Arefi, Mohammad Mehdi
    Luo, Hao
    Yin, Shen
    [J]. NONLINEAR DYNAMICS, 2022, 110 (03) : 2635 - 2655
  • [2] Gradient estimation algorithms for the parameter identification of bilinear systems using the auxiliary model
    Ding, Feng
    Xu, Ling
    Meng, Dandan
    Jin, Xue-Bo
    Alsaedi, Ahmed
    Hayat, Tasawar
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 369
  • [3] Unbiased parameter estimation for the identification of bilinear systems
    Meddeb, S
    Tourneret, JY
    Castanie, F
    [J]. PROCEEDINGS OF THE TENTH IEEE WORKSHOP ON STATISTICAL SIGNAL AND ARRAY PROCESSING, 2000, : 176 - 180
  • [4] Iterative identification algorithms for bilinear-in-parameter systems with autoregressive moving average noise
    Chen, Mengting
    Ding, Feng
    Xu, Ling
    Hayat, Tasawar
    Alsaedi, Ahmed
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2017, 354 (17): : 7885 - 7898
  • [5] Hierarchical parameter and state estimation for bilinear systems
    Zhang, Xiao
    Ding, Feng
    [J]. INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2020, 51 (02) : 275 - 290
  • [6] Design of auxiliary model and hierarchical normalized fractional adaptive algorithms for parameter estimation of bilinear-in-parameter systems
    Zhu, Yancheng
    Wu, Huaiyu
    Chen, Zhihuan
    Chen, Yang
    Zheng, Xiujuan
    [J]. INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2022, 36 (10) : 2562 - 2584
  • [7] The filtering based parameter identification for bilinear-in-parameter systems
    Wang, Xuehai
    Ding, Feng
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2019, 356 (01): : 514 - 538
  • [8] Recursive parameter estimation and its convergence for bilinear systems
    Zhang, Xiao
    Ding, Feng
    [J]. IET CONTROL THEORY AND APPLICATIONS, 2020, 14 (05): : 677 - 688
  • [9] Maximum-likelihood parameter estimation of bilinear systems
    Gibson, S
    Wills, A
    Ninness, B
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2005, 50 (10) : 1581 - 1596
  • [10] Iterative algorithms for optimal MAP estimation of bilinear systems
    Johnston, L
    Krishnamurthy, V
    Logothetis, A
    [J]. 1998 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY - PROCEEDINGS, 1998, : 23 - 23