The p-adic Corlette–Simpson correspondence for abeloids

被引:0
|
作者
Ben Heuer
Lucas Mann
Annette Werner
机构
[1] Universität Bonn,Mathematisches Institut
[2] Goethe-Universität Frankfurt,Institut für Mathematik
来源
Mathematische Annalen | 2023年 / 385卷
关键词
14K15; 14G45; 14G22;
D O I
暂无
中图分类号
学科分类号
摘要
For an abeloid variety A over a complete algebraically closed field extension K of Qp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Q}_p$$\end{document}, we construct a p-adic Corlette–Simpson correspondence, namely an equivalence between finite-dimensional continuous K-linear representations of the Tate module and a certain subcategory of the Higgs bundles on A. To do so, our central object of study is the category of vector bundles for the v-topology on the diamond associated to A. We prove that any pro-finite-étale v-vector bundle can be built from pro-finite-étale v-line bundles and unipotent v-bundles. To describe the latter, we extend the theory of universal vector extensions to the v-topology and use this to generalise a result of Brion by relating unipotent v-bundles on abeloids to representations of vector groups.
引用
收藏
页码:1639 / 1676
页数:37
相关论文
共 50 条
  • [11] Patching and the p-adic local Langlands correspondence
    Caraiani, Ana
    Emerton, Matthew
    Gee, Toby
    Geraghty, David
    Paskunas, Vytautas
    Shin, Sug Woo
    CAMBRIDGE JOURNAL OF MATHEMATICS, 2016, 4 (02) : 197 - 287
  • [12] Norm correspondence on p-adic classical groups
    Yu, Xiaoxiang
    Wang, Dengyin
    JOURNAL OF ALGEBRA, 2013, 378 : 22 - 44
  • [13] On the p-adic Langlands correspondence for algebraic tori
    Birkbeck, Christopher
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2020, 32 (01): : 133 - 158
  • [14] Local p-adic Langlands correspondence and Kisin rings
    Colmez, Pierre
    Dospinescu, Gabriel
    Niziol, Wieslawa
    ACTA ARITHMETICA, 2023, 208 (02) : 101 - 126
  • [15] MODULAR GALOIS CORRESPONDENCE - QUATERNIONS FOR A P-ADIC FIELD
    VIGNERAS, MF
    LECTURE NOTES IN MATHEMATICS, 1989, 1380 : 254 - 266
  • [16] Correspondence of the Jacquet-Langlands p-adic forms
    Chenevier, G
    DUKE MATHEMATICAL JOURNAL, 2005, 126 (01) : 161 - 194
  • [17] P-ADIC INTERPOLATION AND CONTINUATION OF P-ADIC FUNCTIONS
    HA, HK
    LECTURE NOTES IN MATHEMATICS, 1983, 1013 : 252 - 265
  • [18] The p-adic local Langlands correspondence for GL(2)(Q(p))
    Colmez, Pierre
    Dospinescu, Gabriel
    Paskunas, Vytautas
    CAMBRIDGE JOURNAL OF MATHEMATICS, 2014, 2 (01) : 1 - 47
  • [19] p-Adic Pseudodifferential Operators and p-Adic Wavelets
    S. V. Kozyrev
    Theoretical and Mathematical Physics, 2004, 138 : 322 - 332
  • [20] p-adic pseudodifferential operators and p-adic wavelets
    Kozyrev, SV
    THEORETICAL AND MATHEMATICAL PHYSICS, 2004, 138 (03) : 322 - 332