On the p-adic Langlands correspondence for algebraic tori

被引:0
|
作者
Birkbeck, Christopher [1 ]
机构
[1] UCL, Dept Math, Gower St, London WC1E 6BT, England
来源
关键词
p-adic; Langlands; tori;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We extend the results by R.P. Langlands on representations of (connected) abelian algebraic groups. This is done by considering characters into any divisible abelian topological group. With this we can then prove what is known as the abelian case of the p-adic Langlands program.
引用
收藏
页码:133 / 158
页数:26
相关论文
共 50 条
  • [1] Patching and the p-adic local Langlands correspondence
    Caraiani, Ana
    Emerton, Matthew
    Gee, Toby
    Geraghty, David
    Paskunas, Vytautas
    Shin, Sug Woo
    [J]. CAMBRIDGE JOURNAL OF MATHEMATICS, 2016, 4 (02) : 197 - 287
  • [2] Correspondence of the Jacquet-Langlands p-adic forms
    Chenevier, G
    [J]. DUKE MATHEMATICAL JOURNAL, 2005, 126 (01) : 161 - 194
  • [3] ALGEBRAIC-FAMILIES OF P-ADIC TORI
    LUTKEBOHMERT, W
    VOGEL, F
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1991, 207 (04) : 619 - 628
  • [4] Local p-adic Langlands correspondence and Kisin rings
    Colmez, Pierre
    Dospinescu, Gabriel
    Niziol, Wieslawa
    [J]. ACTA ARITHMETICA, 2023, 208 (02) : 101 - 126
  • [5] The Local Langlands Correspondence for GLn over p-adic fields
    Scholze, Peter
    [J]. INVENTIONES MATHEMATICAE, 2013, 192 (03) : 663 - 715
  • [6] The Local Langlands Correspondence for GLn over p-adic fields
    Peter Scholze
    [J]. Inventiones mathematicae, 2013, 192 : 663 - 715
  • [7] The p-adic local Langlands correspondence for GL(2)(Q(p))
    Colmez, Pierre
    Dospinescu, Gabriel
    Paskunas, Vytautas
    [J]. CAMBRIDGE JOURNAL OF MATHEMATICS, 2014, 2 (01) : 1 - 47
  • [8] CORRESPONDENCE OF LANGLANDS LOCAL p-ADIC FOR GL2 (Qp)
    Berger, Laurent
    [J]. ASTERISQUE, 2011, (339) : 157 - 180
  • [9] Completed cohomology of Shimura curves and a p-adic Jacquet–Langlands correspondence
    James Newton
    [J]. Mathematische Annalen, 2013, 355 : 729 - 763
  • [10] The spectral p-adic Jacquet-Langlands correspondence and a question of Serre
    Howe, Sean
    [J]. COMPOSITIO MATHEMATICA, 2022, 158 (02) : 245 - 286