Infinitesimal form boundedness and Trudinger’s subordination for the Schrödinger operator

被引:0
|
作者
V.G. Maz’ya
I.E. Verbitsky
机构
[1] Ohio State University,Department of Mathematics
[2] University of Liverpool,Department of Mathematical Sciences
[3] University of Missouri,Department of Mathematics
来源
Inventiones mathematicae | 2005年 / 162卷
关键词
Nash; Quadratic Form; Distributional Potential; Nonnegative Function; Integral Inequality;
D O I
暂无
中图分类号
学科分类号
摘要
We give explicit analytic criteria for two problems associated with the Schrödinger operator H=-Δ+Q on L2(ℝn) where Q∈D’(ℝn) is an arbitrary real- or complex-valued potential.
引用
收藏
页码:81 / 136
页数:55
相关论文
共 50 条
  • [31] Dirichlet problem for the Schrödinger operator on a cone
    Lei Qiao
    Guan-Tie Deng
    Boundary Value Problems, 2012
  • [32] Reduction of the dressing chain of the Schrödinger operator
    M. Yu. Kulikov
    V. S. Novikov
    Theoretical and Mathematical Physics, 2000, 123 : 768 - 775
  • [33] Symmetries of Schrödinger Operator with Point Interactions
    S. Albeverio
    L. Dabrowski
    P. Kurasov
    Letters in Mathematical Physics, 1998, 45 : 33 - 47
  • [34] Extrinsic estimates for the eigenvalues of Schrödinger operator
    Guangyue Huang
    Xingxiao Li
    Ruiwei Xu
    Geometriae Dedicata, 2009, 143 : 89 - 107
  • [35] Local Perturbations of the Schrödinger Operator on the Plane
    R. R. Gadyl'shin
    Theoretical and Mathematical Physics, 2004, 138 : 33 - 44
  • [36] Spectral surgery for the Schrödinger operator on graphs
    A. N. Bondarenko
    V. A. Dedok
    Doklady Mathematics, 2012, 85 : 367 - 368
  • [37] Maximum Principle for the Regularized Schrödinger Operator
    R. S. Kraußhar
    M. M. Rodrigues
    N. Vieira
    Results in Mathematics, 2016, 69 : 49 - 68
  • [38] On 4-order Schrödinger operator and Beam operator
    Dan Li
    Junfeng Li
    Frontiers of Mathematics in China, 2019, 14 : 1197 - 1211
  • [39] On Schrödinger Propagator for the Special Hermite Operator
    P. K. Ratnakumar
    Journal of Fourier Analysis and Applications, 2008, 14 : 286 - 300
  • [40] Spectral properties of the Schrödinger operator with δ-distribution
    M. Nursultanov
    Mathematical Notes, 2016, 100 : 263 - 275