Infinitesimal form boundedness and Trudinger’s subordination for the Schrödinger operator

被引:0
|
作者
V.G. Maz’ya
I.E. Verbitsky
机构
[1] Ohio State University,Department of Mathematics
[2] University of Liverpool,Department of Mathematical Sciences
[3] University of Missouri,Department of Mathematics
来源
Inventiones mathematicae | 2005年 / 162卷
关键词
Nash; Quadratic Form; Distributional Potential; Nonnegative Function; Integral Inequality;
D O I
暂无
中图分类号
学科分类号
摘要
We give explicit analytic criteria for two problems associated with the Schrödinger operator H=-Δ+Q on L2(ℝn) where Q∈D’(ℝn) is an arbitrary real- or complex-valued potential.
引用
收藏
页码:81 / 136
页数:55
相关论文
共 50 条
  • [21] Boundedness of Operators Related to a Degenerate Schrödinger Semigroup
    E. Harboure
    O. Salinas
    B. Viviani
    Potential Analysis, 2022, 57 : 401 - 431
  • [22] ON BOUNDEDNESS PROPERTY OF SINGULAR INTEGRAL OPERATORS ASSOCIATED TO A SCHR?DINGER OPERATOR IN A GENERALIZED MORREY SPACE AND APPLICATIONS
    Xuan Truong LE
    Thanh Nhan NGUYEN
    Ngoc Trong NGUYEN
    Acta Mathematica Scientia, 2020, 40 (05) : 1171 - 1184
  • [23] Boundedness of Schrödinger Type Propagators on Modulation Spaces
    Elena Cordero
    Fabio Nicola
    Journal of Fourier Analysis and Applications, 2010, 16 : 311 - 339
  • [24] On an inequality of Trudinger type and its application to a nonlinear Schrödinger equation
    Sh. M. Nasibov
    Mathematical Notes, 2006, 80 : 740 - 743
  • [25] Eigenvalues computation by the generalized spectrum method of Schrödinger’s operator
    Ammar Khellaf
    Hamza Guebbai
    Samir Lemita
    Mohamed Zine Aissaoui
    Computational and Applied Mathematics, 2018, 37 : 5965 - 5980
  • [26] Lagrangian form of Schrödinger equation
    D. Arsenović
    N. Burić
    D. M. Davidović
    S. Prvanović
    Foundations of Physics, 2014, 44 : 725 - 735
  • [27] Local Perturbations of the Schrödinger Operator on the Axis
    R. R. Gadyl'shin
    Theoretical and Mathematical Physics, 2002, 132 : 976 - 982
  • [28] Schrödinger operator with a complex steplike potential
    Duc, Tho Nguyen
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 416 : 299 - 356
  • [29] On the Discreteness of the Spectrum of the magnetic Schrödinger operator
    A. R. Aliev
    E. H. Eyvazov
    Functional Analysis and Its Applications, 2012, 46 : 305 - 307
  • [30] Trace formulas for a discrete Schrödinger operator
    E. L. Korotyaev
    A. Laptev
    Functional Analysis and Its Applications, 2017, 51 : 225 - 229