Existence and uniqueness of weak solutions for a class of fractional superdiffusion equations

被引:0
|
作者
Meilan Qiu
Liquan Mei
Ganshang Yang
机构
[1] Xi’an Jiaotong University,School of Mathematics and Statistics
[2] Yunnan Nationalities University,Department of Mathematics
[3] Yunnan Normal University,Institute of Mathematics
关键词
fractional (linear or nonlinear) superdiffusion equation; fractional drift superdiffusion equation; Schauder’s fixed point theorem; Arzelà-Ascoli compactness theorem;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the existence and uniqueness of weak solutions for a class of fractional superdiffusion equations with initial-boundary conditions. For a multidimensional fractional drift superdiffusion equation, we just consider the simplest case with divergence-free drift velocity u∈L2(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$u \in L^{2}(\Omega)$\end{document} only depending on the spatial variable x. Finally, exploiting the Schauder fixed point theorem combined with the Arzelà-Ascoli compactness theorem, we obtain the existence and uniqueness of weak solutions in the standard Banach space C([0,T];H01(Ω))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$C([0,T]; H_{0}^{1}(\Omega))$\end{document} for a class of fractional superdiffusion equations.
引用
收藏
相关论文
共 50 条
  • [1] Existence and uniqueness of weak solutions for a class of fractional superdiffusion equations
    Qiu, Meilan
    Mei, Liquan
    Yang, Ganshang
    ADVANCES IN DIFFERENCE EQUATIONS, 2017,
  • [2] On the existence and uniqueness of solutions of a class of fractional differential equations
    Ibrahim, Rabha W.
    Momani, Shaher
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 334 (01) : 1 - 10
  • [3] EXISTENCE AND UNIQUENESS OF WEAK SOLUTIONS FOR A CLASS OF NONLINEAR PARABOLIC EQUATIONS
    Chen, Peiying
    ELECTRONIC RESEARCH ANNOUNCEMENTS IN MATHEMATICAL SCIENCES, 2017, 24 : 38 - 52
  • [4] Existence and uniqueness of positive solutions for a class of nonlinear fractional differential equations
    Lingling Zhang
    Huimin Tian
    Advances in Difference Equations, 2017
  • [5] Existence and uniqueness of positive solutions for a class of nonlinear fractional differential equations
    Zhang, Lingling
    Tian, Huimin
    ADVANCES IN DIFFERENCE EQUATIONS, 2017,
  • [6] Fractional porous media equations: existence and uniqueness of weak solutions with measure data
    Gabriele Grillo
    Matteo Muratori
    Fabio Punzo
    Calculus of Variations and Partial Differential Equations, 2015, 54 : 3303 - 3335
  • [7] Fractional porous media equations: existence and uniqueness of weak solutions with measure data
    Grillo, Gabriele
    Muratori, Matteo
    Punzo, Fabio
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 54 (03) : 3303 - 3335
  • [8] The Existence and Uniqueness of a Class of Fractional Differential Equations
    Bai, Zhanbing
    Sun, Sujing
    Chen, YangQuan
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [9] EXISTENCE AND UNIQUENESS OF WEAK SOLUTIONS FOR A CLASS OF NONLINEAR DIVERGENCE TYPE DIFFUSION EQUATIONS
    Chen, P.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2017, 43 (07): : 2393 - 2410
  • [10] Existence of weak solutions for a class of fractional Schrodinger equations with periodic potential
    Pu, Yang
    Liu, Jiu
    Tang, Chun-Lei
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 73 (03) : 465 - 482