Natural connections on the bundle of Riemannian metrics

被引:0
|
作者
R. Ferreiro Pérez
J. Muñoz Masqué
机构
[1] Universidad Complutense Madrid,
[2] CSIC,undefined
来源
关键词
2000 Mathematics Subject Classification: 53A55, 53B05, 53B21, 57R20, 58A20, 58D19; Key words: Bundle of metrics, linear frame bundles, natural connections, universal Pontryagin forms;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$FM,{\cal M}_M$\end{document} be the bundles of linear frames and Riemannian metrics of a manifold M, respectively. The existence of a unique Diff M-invariant connection form on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$J^1{\cal M}_M\times _M FM\rightarrow J^1{\cal M}_M$\end{document}, which is Riemannian with respect to the universal metric on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$J^1{\cal M}_M\times _M TM$\end{document}, is proved. Applications to the construction of universal Pontryagin and Euler forms, are given.
引用
下载
收藏
页码:67 / 78
页数:11
相关论文
共 50 条