Natural connections on the bundle of Riemannian metrics

被引:0
|
作者
R. Ferreiro Pérez
J. Muñoz Masqué
机构
[1] Universidad Complutense Madrid,
[2] CSIC,undefined
来源
关键词
2000 Mathematics Subject Classification: 53A55, 53B05, 53B21, 57R20, 58A20, 58D19; Key words: Bundle of metrics, linear frame bundles, natural connections, universal Pontryagin forms;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$FM,{\cal M}_M$\end{document} be the bundles of linear frames and Riemannian metrics of a manifold M, respectively. The existence of a unique Diff M-invariant connection form on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$J^1{\cal M}_M\times _M FM\rightarrow J^1{\cal M}_M$\end{document}, which is Riemannian with respect to the universal metric on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$J^1{\cal M}_M\times _M TM$\end{document}, is proved. Applications to the construction of universal Pontryagin and Euler forms, are given.
引用
收藏
页码:67 / 78
页数:11
相关论文
共 50 条
  • [21] Vranceanu connections and foliations with bundle-like metrics
    Bejancu, Aurel
    Farran, Hani Reda
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2008, 118 (01): : 99 - 113
  • [22] ON NATURAL METRICS ON TANGENT BUNDLES OF RIEMANNIAN MANIFOLDS
    Abbassi, Mohamed Tahar Kadaoui
    Sarih, Maati
    ARCHIVUM MATHEMATICUM, 2005, 41 (01): : 71 - 92
  • [23] On Riemannian g-natural metrics of the form a.gs+b.gh+c.gv on the tangent bundle of a Riemannian manifold (M,g)
    Abbassi, Mohamed Tahar Kadaoui
    Sarih, Maati
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2005, 2 (01) : 19 - 43
  • [24] Vrănceanu connections and foliations with bundle-like metrics
    Aurel Bejancu
    Hani Reda Farran
    Proceedings Mathematical Sciences, 2008, 118 : 99 - 113
  • [25] g-NATURAL METRICS ON THE COTANGENT BUNDLE
    Agca, Filiz
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2013, 6 (01): : 129 - 146
  • [26] Averaged Riemannian metrics and connections with application to locally conformal Berwald manifolds
    Aikou, Tadashi
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2012, 81 (1-2): : 179 - 198
  • [27] On Riemannian g-natural Metrics of the Form a.gs + b.gh + c.gv on the Tangent Bundle of a Riemannian Manifold (M, g)
    Mohamed Tahar Kadaoui Abbassi
    Maâti Sarih
    Mediterranean Journal of Mathematics, 2005, 2 : 19 - 43
  • [28] NATURAL CONNECTIONS ON CONFORMAL RIEMANNIAN P-MANIFOLDS
    Gribacheva, Dobrinka
    Mekerov, Dimitar
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2012, 65 (05): : 581 - 590
  • [29] IPHP TRANSFORMATIONS ON TANGENT BUNDLE OF A RIEMANNIAN MANIFOLD WITH RESPECT TO A CLASS OF LIFT METRICS
    Zohrehvand, Mosayeb
    EURASIAN MATHEMATICAL JOURNAL, 2022, 13 (02): : 82 - 92
  • [30] Infinitesimal Projective Transformations on the Tangent Bundle of a Riemannian Manifold with a Class of Lift Metrics
    Zohrehvand, Mosayeb
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2020, 13 (01): : 50 - 60