Natural connections on the bundle of Riemannian metrics

被引:0
|
作者
R. Ferreiro Pérez
J. Muñoz Masqué
机构
[1] Universidad Complutense Madrid,
[2] CSIC,undefined
来源
关键词
2000 Mathematics Subject Classification: 53A55, 53B05, 53B21, 57R20, 58A20, 58D19; Key words: Bundle of metrics, linear frame bundles, natural connections, universal Pontryagin forms;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$FM,{\cal M}_M$\end{document} be the bundles of linear frames and Riemannian metrics of a manifold M, respectively. The existence of a unique Diff M-invariant connection form on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$J^1{\cal M}_M\times _M FM\rightarrow J^1{\cal M}_M$\end{document}, which is Riemannian with respect to the universal metric on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$J^1{\cal M}_M\times _M TM$\end{document}, is proved. Applications to the construction of universal Pontryagin and Euler forms, are given.
引用
收藏
页码:67 / 78
页数:11
相关论文
共 50 条
  • [1] Natural connections on the bundle of Riemannian metrics
    Ferreiro Perez, R.
    Munoz Masque, J.
    [J]. MONATSHEFTE FUR MATHEMATIK, 2008, 155 (01): : 67 - 78
  • [2] Golden Riemannian Structures On the Tangent Bundle with g-Natural Metrics
    Peyghan, E.
    Firuzi, E.
    De, U. C.
    [J]. FILOMAT, 2019, 33 (08) : 2543 - 2554
  • [3] A NEW CLASS OF RIEMANNIAN METRICS ON TANGENT BUNDLE OF A RIEMANNIAN MANIFOLD
    Baghban, Amir
    Sababe, Saeed Hashemi
    [J]. COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2020, 35 (04): : 1255 - 1267
  • [4] RIEMANNIAN METRICS ON THE TANGENT BUNDLE OF A FINSLER SUBMANIFOLD
    Bejancu, Aurel
    Farran, Hani Reda
    [J]. ANALELE STIINTIFICE ALE UNIVERSITATII AL I CUZA DIN IASI-SERIE NOUA-MATEMATICA, 2010, 56 (02): : 429 - 436
  • [5] SOME METRICS AND CONNECTIONS IN TANGENT BUNDLE
    SZILVASINAGY, M
    [J]. PERIODICA POLYTECHNICA-MECHANICAL ENGINEERING, 1977, 21 (02): : 145 - 152
  • [6] Metrics and Connections on the Bundle of Affinor Frames
    Habil FATTAYEV
    Arif SALIMOV
    [J]. Chinese Annals of Mathematics,Series B, 2021, 42 (01) : 121 - 134
  • [7] Connections on the generalized tangent bundle of a Riemannian manifold
    Blaga, Adara M.
    [J]. BALKAN JOURNAL OF GEOMETRY AND ITS APPLICATIONS, 2011, 16 (01): : 27 - 36
  • [8] Metrics and Connections on the Bundle of Affinor Frames
    Habil Fattayev
    Arif Salimov
    [J]. Chinese Annals of Mathematics, Series B, 2021, 42 : 121 - 134
  • [9] Metrics and Connections on the Bundle of Affinor Frames
    Fattayev, Habil
    Salimov, Arif
    [J]. CHINESE ANNALS OF MATHEMATICS SERIES B, 2021, 42 (01) : 121 - 134
  • [10] Canonical corrections of Finsler metrics and Finslerian connections on Riemannian metrics
    Vargas, JG
    Torr, DG
    [J]. GENERAL RELATIVITY AND GRAVITATION, 1996, 28 (04) : 451 - 469