Limit points and additive group actions

被引:0
|
作者
Ivan Arzhantsev
机构
[1] HSE University,Faculty of Computer Science
来源
Ricerche di Matematica | 2024年 / 73卷
关键词
Affine variety; Torus action; Additive group action; Locally nilpotent derivation; Primary 14J50; 14R20; Secondary 13A50; 14L30;
D O I
暂无
中图分类号
学科分类号
摘要
We show that an effective action of the one-dimensional torus Gm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb G}_m$$\end{document} on a normal affine algebraic variety X can be extended to an effective action of a semi-direct product Gm⋌Ga\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb G}_m\rightthreetimes {\mathbb G}_a$$\end{document} with the same general orbit closures if and only if there is a divisor D on X that consists of Gm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb G}_m$$\end{document}-fixed points. This result is applied to the study of orbits of the automorphism group Aut(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\mathrm{Aut}\,}}(X)$$\end{document} on X.
引用
收藏
页码:715 / 724
页数:9
相关论文
共 50 条