Algebraic actions of the discrete Heisenberg group: Expansiveness and homoclinic points

被引:6
|
作者
Goll, Martin [1 ]
Schmidt, Klaus [2 ,3 ]
Verbitskiy, Evgeny [1 ,4 ]
机构
[1] Leiden Univ, Math Inst, NL-2300 RA Leiden, Netherlands
[2] Univ Vienna, Math Inst, A-1090 Vienna, Austria
[3] Erwin Schrodinger Inst Math Phys, A-1090 Vienna, Austria
[4] Univ Groningen, Johann Bernoulli Inst Math & Comp Sci, NL-9700 AK Groningen, Netherlands
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 2014年 / 25卷 / 04期
关键词
Expansiveness; Homoclinic points; Algebraic action; Symbolic covers; PERIODIC POINTS;
D O I
10.1016/j.indag.2014.04.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We survey some of the known criteria for expansiveness of principal algebraic actions of countably infinite discrete groups. In the special case of the discrete Heisenberg group we propose a new approach to this problem based on Allan's local principle. Furthermore, we present a first example of an absolutely summable homoclinic point for a nonexpansive action of the discrete Heisenberg group and use it to construct an equal-entropy symbolic cover of the system. (C) 2014 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:713 / 744
页数:32
相关论文
共 50 条