Markovian properties of continuous group actions: Algebraic actions, entropy and the homoclinic group

被引:5
|
作者
Barbieri, Sebastian [1 ]
Garcia-Ramos, Felipe [2 ,3 ]
Li, Hanfeng [4 ,5 ]
机构
[1] Univ Santiago Chile, DMCC, Estn Cent, Las Sophoras 173, Santiago, Chile
[2] CONACyT, Mexico City, DF, Mexico
[3] Univ Autonoma San Luis Potosi, Inst Fis, San Luis Potosi, San Luis Potosi, Mexico
[4] Chongqing Univ, Ctr Math, Chongqing 401331, Peoples R China
[5] SUNY Buffalo, Dept Math, Buffalo, NY 14260 USA
基金
美国国家科学基金会;
关键词
Topological entropy; Sofic entropy; Algebraic actions; Expansive actions; Homoclinic points; Topological Markov properties; FUGLEDE-KADISON DETERMINANTS; COMBINATORIAL INDEPENDENCE; RANDOM-FIELDS; SOFIC GROUPS; AUTOMORPHISMS; POINTS; PAIRS; DISJOINTNESS; SUBSHIFTS; THEOREMS;
D O I
10.1016/j.aim.2022.108196
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide a unifying approach which links results on algebraic actions by Lind and Schmidt, Chung and Li, and a topological result by Meyerovitch that relates entropy to the set of asymptotic pairs. In order to do this we introduce a series of Markovian properties and, under the assumption that they are satisfied, we prove several results that relate topological entropy and asymptotic pairs (the homoclinic group in the algebraic case). As new applications of our method, we give a characterization of the homoclinic group of any finitely presented expansive algebraic action of (1) any elementary amenable group with an upper bound on the orders of finite subgroups or (2) any left orderable amenable group, using the language of independence entropy pairs. Published by Elsevier Inc.
引用
收藏
页数:52
相关论文
共 50 条
  • [1] Algebraic entropy of amenable group actions
    Virili, Simone
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2019, 291 (3-4) : 1389 - 1417
  • [2] Algebraic entropy of amenable group actions
    Simone Virili
    [J]. Mathematische Zeitschrift, 2019, 291 : 1389 - 1417
  • [3] Algebraic actions of the discrete Heisenberg group: Expansiveness and homoclinic points
    Goll, Martin
    Schmidt, Klaus
    Verbitskiy, Evgeny
    [J]. INDAGATIONES MATHEMATICAE-NEW SERIES, 2014, 25 (04): : 713 - 744
  • [4] On models of algebraic group actions
    Michel Brion
    [J]. Proceedings - Mathematical Sciences, 132
  • [5] On models of algebraic group actions
    Brion, Michel
    [J]. PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2022, 132 (02):
  • [6] Entropy for random group actions
    Burton, R
    Dajani, K
    Meester, R
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1998, 18 : 109 - 124
  • [7] On the entropy for group actions on the circle
    Jorquera, Eduardo
    [J]. FUNDAMENTA MATHEMATICAE, 2009, 204 (02) : 177 - 187
  • [8] EXOTIC ALGEBRAIC GROUP-ACTIONS
    SCHWARZ, GW
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1989, 309 (02): : 89 - 94
  • [9] ALGEBRAIC REALIZATION FOR CYCLIC GROUP ACTIONS
    Dovermann, Karl Heinz
    Wasserman, Arthur G.
    [J]. TRANSFORMATION GROUPS, 2023, 28 (04) : 1561 - 1593
  • [10] ALGEBRAIC REALIZATION FOR CYCLIC GROUP ACTIONS
    KARL HEINZ DOVERMANN
    ARTHUR G. WASSERMAN
    [J]. Transformation Groups, 2023, 28 : 1561 - 1593