Algebraic actions of the discrete Heisenberg group: Expansiveness and homoclinic points

被引:6
|
作者
Goll, Martin [1 ]
Schmidt, Klaus [2 ,3 ]
Verbitskiy, Evgeny [1 ,4 ]
机构
[1] Leiden Univ, Math Inst, NL-2300 RA Leiden, Netherlands
[2] Univ Vienna, Math Inst, A-1090 Vienna, Austria
[3] Erwin Schrodinger Inst Math Phys, A-1090 Vienna, Austria
[4] Univ Groningen, Johann Bernoulli Inst Math & Comp Sci, NL-9700 AK Groningen, Netherlands
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 2014年 / 25卷 / 04期
关键词
Expansiveness; Homoclinic points; Algebraic action; Symbolic covers; PERIODIC POINTS;
D O I
10.1016/j.indag.2014.04.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We survey some of the known criteria for expansiveness of principal algebraic actions of countably infinite discrete groups. In the special case of the discrete Heisenberg group we propose a new approach to this problem based on Allan's local principle. Furthermore, we present a first example of an absolutely summable homoclinic point for a nonexpansive action of the discrete Heisenberg group and use it to construct an equal-entropy symbolic cover of the system. (C) 2014 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:713 / 744
页数:32
相关论文
共 50 条
  • [41] ALGEBRAIC GROUP ACTIONS ON NONCOMMUTATIVE SPECTRA
    Lorenz, Martin
    TRANSFORMATION GROUPS, 2009, 14 (03) : 649 - 675
  • [42] ALGEBRAIC REALIZATION FOR CYCLIC GROUP ACTIONS
    KARL HEINZ DOVERMANN
    ARTHUR G. WASSERMAN
    Transformation Groups, 2023, 28 : 1561 - 1593
  • [43] GROUP ACTIONS ON ALGEBRAIC CELL COMPLEXES
    Kropholler, P. H.
    Wall, C. T. C.
    PUBLICACIONS MATEMATIQUES, 2011, 55 (01) : 3 - 18
  • [44] Algebraic quotients of compact group actions
    Schwarz, GW
    JOURNAL OF ALGEBRA, 2001, 244 (02) : 365 - 378
  • [45] Algebraic entropy of amenable group actions
    Simone Virili
    Mathematische Zeitschrift, 2019, 291 : 1389 - 1417
  • [46] Algebraic group actions on noncommutative spectra
    Martin Lorenz
    Transformation Groups, 2009, 14 : 649 - 675
  • [47] A birational invariant for algebraic group actions
    Reichstein, Z
    Youssin, B
    PACIFIC JOURNAL OF MATHEMATICS, 2002, 204 (01) : 223 - 246
  • [48] Birational splitting and algebraic group actions
    Popov V.L.
    European Journal of Mathematics, 2016, 2 (1) : 283 - 290
  • [49] Ergodicity of principal algebraic group actions
    Li, Hanfeng
    Peterson, Jesse
    Schmidt, Klaus
    RECENT TRENDS IN ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2015, 631 : 201 - 210
  • [50] Hyperbolic homoclinic points of Z(d)-actions in lattice dynamical systems
    Afraimovich, VS
    Chow, SN
    Shen, WX
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1996, 6 (06): : 1059 - 1075