The Brezis–Nirenberg Problem for the Fractional p-Laplacian in Unbounded Domains

被引:0
|
作者
Yan Sheng Shen
机构
[1] Jiangsu University,School of Mathematical Sciences
关键词
Brezis–Nirenberg problem; fractional Poincaré inequality; fractional ; -Laplacian; unbounded cylinder type domains; concentration–compactness principle; 35R11; 35A23; 35A15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study the existence of nontrivial solutions to the well-known Brezis–Nirenberg problem involving the fractional p-Laplace operator in unbounded cylinder type domains. By means of the fractional Poincaré inequality in unbounded cylindrical domains, we first study the asymptotic property of the first eigenvalue λp,s(ωδ^)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lambda _{p,s}}(\widehat {{\omega _\delta }})$$\end{document} with respect to the domain (ωδ^)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\widehat {{\omega _\delta }})$$\end{document}. Then, by applying the concentration-compactness principle for fractional Sobolev spaces in unbounded domains, we prove the existence results. The present work complements the results of Mosconi–Perera–Squassina–Yang [The Brezis–Nirenberg problem for the fractional p-Laplacian. Calc. Var. Partial Differential Equations, 55(4), 25 pp. 2016] to unbounded domains and extends the classical Brezis–Nirenberg type results of Ramos–Wang–Willem [Positive solutions for elliptic equations with critical growth in unbounded domains. In: Chapman Hall/CRC Press, Boca Raton, 2000, 192–199] to the fractional p-Laplacian setting.
引用
收藏
页码:2181 / 2206
页数:25
相关论文
共 50 条