EXISTENCE RESULTS FOR FRACTIONAL BREZIS-NIRENBERG TYPE PROBLEMS IN UNBOUNDED DOMAINS

被引:0
|
作者
Wang, Xumin [1 ]
Shen, Yansheng [2 ]
机构
[1] Beijing Forestry Univ, Coll Sci, Beijing 100083, Peoples R China
[2] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
基金
中国国家自然科学基金;
关键词
Fractional Brezis-Nirenberg type problems; unbounded cylinder type domains; fractional Poincare inequalities; concentration-compactness principle; ELLIPTIC PROBLEMS; ASYMPTOTIC-BEHAVIOR; POSITIVE SOLUTIONS; CRITICAL GROWTH; EQUATIONS; INEQUALITIES; CONSTANTS; SYMMETRY; STRIP; MASS;
D O I
10.12775/TMNA.2022.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study the fractional Brezis-Nirenberg type problems in unbounded cylinder-type domains {(-Delta)(s)u - mu u/vertical bar x vertical bar 2s - lambda u + vertical bar u vertical bar(2s)* (- 2u) in Omega, u = 0 in R-N\Omega, where (-Delta)(s) is the fractional Laplace operator with s is an element of (0, 1), mu is an element of [0, Lambda(N,s)) with Lambda(N,s) the best fractional Hardy constant, lambda > 0, N > 2s and 2(s)* = 2N/(N - 2s) denotes the fractional critical Sobolev exponent. By applying the fractional Poincare inequality together with the concentration-compactness principle for fractional Sobolev spaces in unbounded domains, we prove an existence result to the equation.
引用
收藏
页码:517 / 546
页数:30
相关论文
共 50 条
  • [1] The Brezis-Nirenberg Problem for the Fractional p-Laplacian in Unbounded Domains
    Shen, Yan Sheng
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2023, 39 (11) : 2181 - 2206
  • [2] The Brezis-Nirenberg Problem for Fractional p-Laplacian Systems in Unbounded Domains
    Shen, Yansheng
    [J]. RESULTS IN MATHEMATICS, 2024, 79 (04)
  • [3] The fractional Brezis-Nirenberg problems on lower dimensions
    Guo, Yuxia
    Li, Benniao
    Pistoia, Angela
    Yan, Shusen
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 286 : 284 - 331
  • [4] Existence results for Brezis-Nirenberg problems with Hardy potential and singular coefficients
    Xuan, Benjin
    Su, Shaowei
    Yan, Yajun
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 67 (07) : 2091 - 2106
  • [5] MULTIPLE SOLUTIONS FOR BREZIS-NIRENBERG PROBLEMS WITH FRACTIONAL LAPLACIAN
    Guo, Hui
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2016,
  • [6] A note on borderline Brezis-Nirenberg type problems
    Haddad, Julian
    Montenegro, Marcos
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 147 : 169 - 175
  • [7] ON QUASILINEAR BREZIS-NIRENBERG TYPE PROBLEMS WITH WEIGHTS
    Garcia-Huidobro, Marta
    Yarer, Cecilia S.
    [J]. ADVANCES IN DIFFERENTIAL EQUATIONS, 2010, 15 (5-6) : 401 - 436
  • [8] EXISTENCE OF SOLUTIONS FOR THE BREZIS-NIRENBERG PROBLEM
    De Paiva, Francisco O.
    Miyagaki, Olimpio H.
    Presoto, Adilson E.
    [J]. TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2023, 61 (02) : 651 - 659
  • [9] A Brezis-Nirenberg type result for a nonlocal fractional operator
    Mawhin, Jean
    Bisci, Giovanni Molica
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2017, 95 : 73 - 93
  • [10] EXISTENCE OF POSITIVE SOLUTIONS FOR BREZIS-NIRENBERG TYPE PROBLEMS INVOLVING AN INVERSE OPERATOR
    Alvarez-Caudevilla, Pablo
    Colorado, Eduardo
    Ortega, Alejandro
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2021,