Asymptotic rates of response from forest tree breeding strategies using best linear unbiased prediction

被引:0
|
作者
R. J. Kerr
机构
[1] Southern Tree Breeding Association,
[2] P.O. Box 1811,undefined
[3] Mount Gambier,undefined
[4] S.A. 5270,undefined
[5] Australia,undefined
来源
关键词
Key words BLUP-Multivariate analysis; Breeding strategy; Genetic gain;
D O I
暂无
中图分类号
学科分类号
摘要
Genetic gain equations are developed for selection on multiple traits using either multi- or univariate best linear unbiased predictors (BLUP) and for selection under controlled and open pollination and polymix mating schemes. The equations assume an infinite population and account for the effects of selection. A comparison with simulated populations under the same mating schemes show that the gain equations predict selection response well, with the predictions having some upward bias. The gain equations are used to compare across mating schemes, to compare univariate to multivariate analyses, and to measure the reduction in the rate of genetic gain due to selection disequilibrium. Results show controlled pollination schemes can offer as much as a 56% advantage in genetic gain relative to open pollination. The reduction in the rate of genetic gain due to selection disequilibrium is approximately 27% under controlled pollination for the breeding goals studied. The results show a limited benefit in using multivariate analyses for predicting breeding values.
引用
收藏
页码:484 / 493
页数:9
相关论文
共 50 条
  • [21] Effect of genomic prediction on response to selection in forest tree breeding
    Stejskal, J.
    Lstiburek, M.
    Klapste, J.
    Cepl, J.
    El-Kassaby, Y. A.
    TREE GENETICS & GENOMES, 2018, 14 (05)
  • [22] Best linear unbiased prediction and optimum allocation of test resources in maize breeding with doubled haploids
    Xuefei Mi
    Thilo Wegenast
    H. Friedrich Utz
    Baldev S. Dhillon
    Albrecht E. Melchinger
    Theoretical and Applied Genetics, 2011, 123 : 1 - 10
  • [23] Best linear unbiased prediction and optimum allocation of test resources in maize breeding with doubled haploids
    Mi, Xuefei
    Wegenast, Thilo
    Utz, H. Friedrich
    Dhillon, Baldev S.
    Melchinger, Albrecht E.
    THEORETICAL AND APPLIED GENETICS, 2011, 123 (01) : 1 - 10
  • [24] A method of computing restricted best linear unbiased prediction of breeding values for some animals in a population
    Satoh, M
    JOURNAL OF ANIMAL SCIENCE, 2004, 82 (08) : 2253 - 2258
  • [25] Comparison of the Performance of Best Linear Unbiased Estimation and Best Linear Unbiased Prediction of Genotype Effects from Zoned Indian Maize Data
    Kleinknecht, K.
    Moehring, J.
    Singh, K. P.
    Zaidi, P. H.
    Atlin, G. N.
    Piepho, H. P.
    CROP SCIENCE, 2013, 53 (04) : 1384 - 1391
  • [26] Best linear unbiased prediction of clonal breeding values and genetic values from full-sib mating designs
    Xiang, B
    Li, BL
    CANADIAN JOURNAL OF FOREST RESEARCH-REVUE CANADIENNE DE RECHERCHE FORESTIERE, 2003, 33 (10): : 2036 - 2043
  • [27] Evaluation of the best linear unbiased prediction method for breeding values of fruit-quality traits in citrus
    A. Imai
    T. Kuniga
    T. Yoshioka
    K. Nonaka
    N. Mitani
    H. Fukamachi
    N. Hiehata
    M. Yamamoto
    T. Hayashi
    Tree Genetics & Genomes, 2016, 12
  • [28] Efficient Computation of Ridge-Regression Best Linear Unbiased Prediction in Genomic Selection in Plant Breeding
    Piepho, H. P.
    Ogutu, J. O.
    Schulz-Streeck, T.
    Estaghvirou, B.
    Gordillo, A.
    Technow, F.
    CROP SCIENCE, 2012, 52 (03) : 1093 - 1104
  • [29] Best Linear Unbiased Prediction of Genomic Breeding Values Using a Trait-Specific Marker-Derived Relationship Matrix
    Zhang, Zhe
    Liu, Jianfeng
    Ding, Xiangdong
    Bijma, Piter
    de Koning, Dirk-Jan
    Zhang, Qin
    PLOS ONE, 2010, 5 (09): : 1 - 8
  • [30] Evaluation of the best linear unbiased prediction method for breeding values of fruit-quality traits in citrus
    Imai, A.
    Kuniga, T.
    Yoshioka, T.
    Nonaka, K.
    Mitani, N.
    Fukamachi, H.
    Hiehata, N.
    Yamamoto, M.
    Hayashi, T.
    TREE GENETICS & GENOMES, 2016, 12 (06)