Efficient Computation of Ridge-Regression Best Linear Unbiased Prediction in Genomic Selection in Plant Breeding

被引:36
|
作者
Piepho, H. P. [1 ]
Ogutu, J. O. [1 ]
Schulz-Streeck, T. [1 ]
Estaghvirou, B. [1 ]
Gordillo, A. [2 ]
Technow, F. [3 ]
机构
[1] Univ Hohenheim, Inst Crop Sci, Bioinformat Unit, D-70599 Stuttgart, Germany
[2] AgReliant Genet LLC, Lebanon, IN 46052 USA
[3] Univ Hohenheim, Inst Plant Breeding, D-70599 Stuttgart, Germany
关键词
GENOMEWIDE SELECTION; QUANTITATIVE TRAITS; GENETIC VALUES; INFORMATION; MAIZE; MODEL;
D O I
10.2135/cropsci2011.11.0592
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Computational efficiency of procedures for genomic selection is an important issue when cross-validation is used for model selection and evaluation. Moreover, limited computational resources may be a bottleneck when processing large datasets. This paper reviews several options for computing ridge-regression best linear unbiased prediction (RR-BLUP) in genomic selection and compares their computational efficiencies when using a mixed model package. Attention is also given to the problem of singular genetic variance-covariance. Annotated code is provided for implementing and evaluating the methods using the MIXED procedure of SAS. It is concluded that a recently proposed method based on a spectral decomposition of the variance-covariance matrix of the data is preferable compared to established methods because of its superior computational efficiency and applicability also for singular genetic variance-covariance.
引用
收藏
页码:1093 / 1104
页数:12
相关论文
共 50 条
  • [1] Optimum contribution selection using traditional best linear unbiased prediction and genomic breeding values in aquaculture breeding schemes
    Nielsen, H. M.
    Sonesson, A. K.
    Meuwissen, T. H. E.
    [J]. JOURNAL OF ANIMAL SCIENCE, 2011, 89 (03) : 630 - 638
  • [2] Breeding without breeding: selection using the genomic best linear unbiased predictor method (GBLUP)
    Yousry A. El-Kassaby
    Jaroslav Klápště
    Robert D. Guy
    [J]. New Forests, 2012, 43 : 631 - 637
  • [3] Breeding without breeding: selection using the genomic best linear unbiased predictor method (GBLUP)
    El-Kassaby, Yousry A.
    Klapste, Jaroslav
    Guy, Robert D.
    [J]. NEW FORESTS, 2012, 43 (5-6) : 631 - 637
  • [4] Combined selection of progeny in crop breeding using best linear unbiased prediction
    Soriano Viana, Jose Marcelo
    Faria, Vinicius Ribeiro
    Fonseca e Silva, Fabyano
    Vilela de Resende, Marcos Deon
    [J]. CANADIAN JOURNAL OF PLANT SCIENCE, 2012, 92 (03) : 553 - 562
  • [5] Comparison of Genomic Best Linear Unbiased Prediction and Bayesian Regularization Neural Networks for Genomic Selection
    Sinecen, Mahmut
    [J]. IEEE ACCESS, 2019, 7 : 79199 - 79210
  • [6] Genomic Selection and Prediction in Plant Breeding
    Crossa, Jose
    Perez, Paulino
    de los Campos, Gustavo
    Mahuku, George
    Dreisigacker, Susanne
    Magorokosho, Cosmos
    [J]. JOURNAL OF CROP IMPROVEMENT, 2011, 25 (03) : 239 - 261
  • [7] BEST LINEAR UNBIASED PREDICTION OF BREEDING VALUES NOT IN MODEL FOR RECORDS
    HENDERSON, CR
    [J]. JOURNAL OF DAIRY SCIENCE, 1977, 60 (05) : 783 - 787
  • [8] RESTRICTED BEST LINEAR UNBIASED PREDICTION AND A SELECTION MODEL
    FAMULA, TR
    [J]. THEORETICAL AND APPLIED GENETICS, 1984, 67 (04) : 337 - 340
  • [10] Detecting effective starting point of genomic selection by divergent trends from best linear unbiased prediction and single-step genomic best linear unbiased prediction in pigs, beef cattle, and broilers
    Abdollahi-Arpanahi, Rostam
    Lourenco, Daniela
    Misztal, Ignacy
    [J]. JOURNAL OF ANIMAL SCIENCE, 2021, 99 (09)