Hamiltonian properties of HCN and BCN networks

被引:0
|
作者
Xiaoyu Du
Cheng Cheng
Zhijie Han
Weibei Fan
Shuai Ding
机构
[1] Henan University,School of Computer and Information Engineering
[2] Henan University,School of Software
[3] Henan University,Henan Engineering Laboratory of Spatial Information Processing
[4] Nanjing University of Posts and Telecommunications,College of Computer
来源
关键词
Data center network; HCN network; BCN network; Hamiltonian path;
D O I
暂无
中图分类号
学科分类号
摘要
Data center network plays an important role in improving the performance of cloud computing. Hamiltonian properties and Hamiltonian connectivity have important applications in communication network. The existence of Hamiltonian path can make the network more efficient communication. HCN and BCN networks are two important data center networks with nice routing performance and excellent scalability. In this paper, we study the Hamiltonian properties and disjoint path covers of these two networks. Firstly, we prove that HCN(n, h) is Hamiltonian-connected with n≥4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 4$$\end{document} and h≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h\ge 0$$\end{document}. Secondly, we prove that BCN(α,β,h,γ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\alpha ,\beta ,h,\gamma )$$\end{document} is Hamiltonian-connected with h<γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h<\gamma$$\end{document}, α≥4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \ge 4$$\end{document}, β≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta \ge 1$$\end{document}, h≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h\ge 0$$\end{document}, γ≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma \ge 0$$\end{document}. Finally, we design Hamiltonian path construction algorithms for HCN and BCN networks. Simulation experiments verify the construction process of Hamiltonian path. Moreover, the running time of the routing algorithm designed in this study is compared with the classical shortest path multicast tree algorithm DijkstraSPT, and its running time is lower than that of the algorithm DijkstraSPT by about 5ms on different server nodes, which shows that the routing algorithm designed in this study according to HCN and BCN structure operate efficiently.
引用
收藏
页码:1622 / 1653
页数:31
相关论文
共 50 条
  • [31] Hamiltonian properties of twisted hypercube-like networks with more faulty elements
    Yang, Xiaofan
    Dong, Qiang
    Yang, Edie
    Cao, Jianqiu
    [J]. THEORETICAL COMPUTER SCIENCE, 2011, 412 (22) : 2409 - 2417
  • [32] Separable Hamiltonian neural networks
    Khoo, Zi-Yu
    Wu, Dawen
    Low, Jonathan Sze Choong
    Bressan, Stephane
    [J]. PHYSICAL REVIEW E, 2024, 110 (04)
  • [33] HAMILTONIAN PROPERTIES OF POWERS OF SPECIAL HAMILTONIAN GRAPHS
    CHARTRAND, G
    KAPOOR, SF
    [J]. COLLOQUIUM MATHEMATICUM, 1974, 29 (01) : 113 - 117
  • [34] Networks of planar Hamiltonian systems
    Tourigny, David S.
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 53 : 263 - 277
  • [35] CLASS OF HAMILTONIAN NEURAL NETWORKS
    DEWILDE, P
    [J]. PHYSICAL REVIEW E, 1993, 47 (02): : 1392 - 1396
  • [36] Networks of Hamiltonian systems and feedback
    Belabbas, M. -A.
    [J]. SYSTEMS & CONTROL LETTERS, 2009, 58 (03) : 217 - 224
  • [37] Adaptable Hamiltonian neural networks
    Han, Chen-Di
    Glaz, Bryan
    Haile, Mulugeta
    Lai, Ying-Cheng
    [J]. PHYSICAL REVIEW RESEARCH, 2021, 3 (02):
  • [38] Optical and electronic properties of BCN films deposited by magnetron sputtering
    Liu, Caiyun
    Chen, Le
    Yin, Hong
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2024, 160 (15):
  • [39] A Highly Crystallized Hexagonal BCN Photocatalyst with Superior Anticorrosion Properties
    Guo, Fangsong
    Li, Shanrong
    Yang, Can
    Zhang, Jinshui
    Hou, Yidong
    Wang, Xinchen
    [J]. ADVANCED OPTICAL MATERIALS, 2022, 10 (15):
  • [40] REACTION-PATH HAMILTONIAN - TUNNELING EFFECTS IN THE UNIMOLECULAR ISOMERIZATION HNC-]HCN
    GRAY, SK
    MILLER, WH
    YAMAGUCHI, Y
    SCHAEFER, HF
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1980, 73 (06): : 2733 - 2739