Hamiltonian properties of HCN and BCN networks

被引:0
|
作者
Xiaoyu Du
Cheng Cheng
Zhijie Han
Weibei Fan
Shuai Ding
机构
[1] Henan University,School of Computer and Information Engineering
[2] Henan University,School of Software
[3] Henan University,Henan Engineering Laboratory of Spatial Information Processing
[4] Nanjing University of Posts and Telecommunications,College of Computer
来源
关键词
Data center network; HCN network; BCN network; Hamiltonian path;
D O I
暂无
中图分类号
学科分类号
摘要
Data center network plays an important role in improving the performance of cloud computing. Hamiltonian properties and Hamiltonian connectivity have important applications in communication network. The existence of Hamiltonian path can make the network more efficient communication. HCN and BCN networks are two important data center networks with nice routing performance and excellent scalability. In this paper, we study the Hamiltonian properties and disjoint path covers of these two networks. Firstly, we prove that HCN(n, h) is Hamiltonian-connected with n≥4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 4$$\end{document} and h≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h\ge 0$$\end{document}. Secondly, we prove that BCN(α,β,h,γ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\alpha ,\beta ,h,\gamma )$$\end{document} is Hamiltonian-connected with h<γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h<\gamma$$\end{document}, α≥4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \ge 4$$\end{document}, β≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta \ge 1$$\end{document}, h≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h\ge 0$$\end{document}, γ≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma \ge 0$$\end{document}. Finally, we design Hamiltonian path construction algorithms for HCN and BCN networks. Simulation experiments verify the construction process of Hamiltonian path. Moreover, the running time of the routing algorithm designed in this study is compared with the classical shortest path multicast tree algorithm DijkstraSPT, and its running time is lower than that of the algorithm DijkstraSPT by about 5ms on different server nodes, which shows that the routing algorithm designed in this study according to HCN and BCN structure operate efficiently.
引用
收藏
页码:1622 / 1653
页数:31
相关论文
共 50 条
  • [21] Topological properties of scale-free networks driven by a graph Hamiltonian
    Yook, Soon-Hyung
    Park, Juyong
    [J]. EPL, 2011, 93 (03)
  • [22] Hamiltonian Neural Networks
    Greydanus, Sam
    Dzamba, Misko
    Yosinski, Jason
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [23] CORRELATION-EFFECTS IN THE ISOMERIC CYANIDES - HNC REVERSIBLE HCN, LINC REVERSIBLE LICN, AND BNC REVERSIBLE BCN
    REDMON, LT
    PURVIS, GD
    BARTLETT, RJ
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1980, 72 (02): : 986 - 991
  • [24] Recent insights into BCN nanomaterials - synthesis, properties and applications
    Kaur, Manjot
    Singh, Kulwinder
    Vij, Ankush
    Kumar, Akshay
    [J]. NEW JOURNAL OF CHEMISTRY, 2023, 47 (05) : 2137 - 2160
  • [25] Electronic and structural properties of vacancy endowed BCN heterostructures
    dos Santos, Ramiro M.
    de Aguiar, Acrisio L.
    Ribeiro Junior, Luiz Antonio
    Martins, Jonathan da Rocha
    [J]. CHEMICAL PHYSICS LETTERS, 2019, 724 : 103 - 109
  • [26] On the role of the interface in the mechanical and electronic properties of BCN monolayers
    de Oliveira, Raphael B.
    dos Santos, Osmar F. P.
    Azevedo, Sergio
    Machado, Leonardo D.
    [J]. DIAMOND AND RELATED MATERIALS, 2024, 145
  • [27] Synthesis and mechanical properties of BCN coatings deposited by PECVD
    Kurapov, D
    Neuschütz, D
    Cremer, R
    Pedersen, T
    Wuttig, M
    Dietrich, D
    Marx, G
    Schneider, JM
    [J]. VACUUM, 2002, 68 (04) : 335 - 339
  • [28] Electronic structures and properties of small (BCN)x (x=1-5) clusters and (BCN)12 nanotube
    Kumar, Abhishek
    Kumar, Ratnesh
    Misra, Neeraj
    Srivastava, Harshita
    Tripathi, Jitendra Kumar
    Srivastava, Ambrish Kumar
    [J]. PRAMANA-JOURNAL OF PHYSICS, 2021, 96 (01):
  • [29] Phonons and thermal conducting properties of borocarbonitride (BCN) nanosheets
    Chakraborty, Himanshu
    Mogurampelly, Santosh
    Yadav, Vivek K.
    Waghmare, Umesh V.
    Klein, Michael L.
    [J]. NANOSCALE, 2018, 10 (47) : 22148 - 22154
  • [30] NEURAL NETWORKS WITH COLOR NEURONS AND HIDDEN UNITS - HAMILTONIAN AND GENERAL-PROPERTIES
    SANDLER, YM
    [J]. PHYSICS LETTERS A, 1991, 157 (2-3) : 119 - 124