Identities on mex-related partitions

被引:0
|
作者
Jane Y. X. Yang
Li Zhou
机构
[1] Chongqing University of Posts and Telecommunications,School of Science
来源
The Ramanujan Journal | 2024年 / 63卷
关键词
Partition; Mex-function; Congruence; Involution; 05A15; 05A17; 05A19;
D O I
暂无
中图分类号
学科分类号
摘要
The minimal excludant, or mex-function, on a set of positive integers is the smallest positive integer not in it. Andrews and Newman defined the mex-function mexA,a(λ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{ mex}_{A,a}(\lambda )$$\end{document} to be the smallest positive integer congruent to a modulo A that is not part of partition λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}, and denote by pA,a(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_{A,a}(n)$$\end{document} (reps. p¯A,a(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{p}_{A,a}(n)$$\end{document}) the number of partitions λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} of n satisfying mexA,a(λ)≡a(reps.a+A)(mod2A),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{ mex}_{A,a}(\lambda )\equiv a \text{(reps. } a+A{\text{) } }\pmod {2A},$$\end{document} and found numerous surprising identities involving these functions. Motivated by the above results, in this paper, we prove that the number of the partitions of n with an even (resp. odd) number of even parts equals the mex-function p4,2(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_{4,2}(n)$$\end{document} (reps. p¯4,2(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{p}_{4,2}(n)$$\end{document}). We also derive several identities connecting the differences of two mex-functions with partitions restricted by certain congruences, which develops the work of Dhar, Mukhopadhyay, and Sarma. Furthermore, we extend the mex-function to overpartitions and study the relevant properties.
引用
收藏
页码:157 / 181
页数:24
相关论文
共 50 条
  • [1] Identities on mex-related partitions
    Yang, Jane Y. X.
    Zhou, Li
    RAMANUJAN JOURNAL, 2024, 63 (01): : 157 - 181
  • [2] Divisibility and distribution of mex-related integer partitions of Andrews and Newman
    Ray, Chiranjit
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2023, 19 (03) : 581 - 592
  • [3] On mex-related partition functions of Andrews and Newman
    Barman, Rupam
    Singh, Ajit
    RESEARCH IN NUMBER THEORY, 2021, 7 (03)
  • [4] On mex-related partition functions of Andrews and Newman
    Rupam Barman
    Ajit Singh
    Research in Number Theory, 2021, 7
  • [5] Mex-Related Partition Functions of Andrews and Newman
    Barman, Rupam
    Singh, Ajit
    JOURNAL OF INTEGER SEQUENCES, 2021, 24 (06)
  • [6] Parity distribution and divisibility of Mex-related partition functions
    Bhattacharyya, Subhrajyoti
    Barman, Rupam
    Singh, Ajit
    Saha, Apu Kumar
    RESEARCH IN NUMBER THEORY, 2024, 10 (01)
  • [7] Parity distribution and divisibility of Mex-related partition functions
    Subhrajyoti Bhattacharyya
    Rupam Barman
    Ajit Singh
    Apu Kumar Saha
    Research in Number Theory, 2024, 10
  • [8] Dyson's crank and the mex of integer partitions
    Hopkins, Brian
    Sellers, James A.
    Stanton, Dennis
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2022, 185
  • [9] Formulas for the number of partitions related to the Rogers-Ramanujan identities
    Alegri, Mateus
    Santos, Wagner Ferreira
    D'Almeida Vilamiu, Raphael Gustavo
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2022, 25 (06): : 1845 - 1854