Parity distribution and divisibility of Mex-related partition functions

被引:0
|
作者
Subhrajyoti Bhattacharyya
Rupam Barman
Ajit Singh
Apu Kumar Saha
机构
[1] National Institute of Technology Agartala,Department of Mathematics
[2] Indian Institute of Technology Guwahati,Department of Mathematics
[3] University of Virginia,Department of Mathematics
[4] National Institute of Technology Agartala,Department of Mathematics
来源
Research in Number Theory | 2024年 / 10卷
关键词
Minimal excludant; mex function; Integer partition; Distribution; Primary 05A17; 11P83;
D O I
暂无
中图分类号
学科分类号
摘要
Andrews and Newman introduced the mex-function mexA,a(λ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {mex}_{A,a}(\lambda )$$\end{document} for an integer partition λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} of a positive integer n as the smallest positive integer congruent to a modulo A that is not a part of λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}. They then defined pA,a(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_{A,a}(n)$$\end{document} to be the number of partitions λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} of n satisfying mexA,a(λ)≡a(mod2A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {mex}_{A,a}(\lambda )\equiv a\pmod {2A}$$\end{document}. They found the generating function for pt,t(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_{t,t}(n)$$\end{document} and p2t,t(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_{2t,t}(n)$$\end{document} for any positive integer t, and studied their arithmetic properties for some small values of t. In this article, we study the partition function pmt,t(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_{mt,t}(n)$$\end{document} for all positive integers m and t. We show that for sufficiently large X, the number of all positive integers n≤X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\le X$$\end{document} such that pmt,t(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_{mt,t}(n)$$\end{document} is an even number is at least O(X/3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}(\sqrt{X/3})$$\end{document} for all positive integers m and t. We also prove that for sufficiently large X, the number of all positive integers n≤X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\le X$$\end{document} such that pmp,p(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_{mp,p}(n)$$\end{document} is an odd number is at least O(loglogX)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}(\log \log X)$$\end{document} for all m≢0(mod3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m\not \equiv 0\pmod {3}$$\end{document} and all primes p≡1(mod3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\equiv 1\pmod {3}$$\end{document}. Finally, we establish identities connecting the ordinary partition function to pmt,t(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_{mt,t}(n)$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [1] Parity distribution and divisibility of Mex-related partition functions
    Bhattacharyya, Subhrajyoti
    Barman, Rupam
    Singh, Ajit
    Saha, Apu Kumar
    RESEARCH IN NUMBER THEORY, 2024, 10 (01)
  • [2] On mex-related partition functions of Andrews and Newman
    Barman, Rupam
    Singh, Ajit
    RESEARCH IN NUMBER THEORY, 2021, 7 (03)
  • [3] On mex-related partition functions of Andrews and Newman
    Rupam Barman
    Ajit Singh
    Research in Number Theory, 2021, 7
  • [4] Mex-Related Partition Functions of Andrews and Newman
    Barman, Rupam
    Singh, Ajit
    JOURNAL OF INTEGER SEQUENCES, 2021, 24 (06)
  • [5] Divisibility and distribution of mex-related integer partitions of Andrews and Newman
    Ray, Chiranjit
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2023, 19 (03) : 581 - 592
  • [6] Identities on mex-related partitions
    Jane Y. X. Yang
    Li Zhou
    The Ramanujan Journal, 2024, 63 : 157 - 181
  • [7] Identities on mex-related partitions
    Yang, Jane Y. X.
    Zhou, Li
    RAMANUJAN JOURNAL, 2024, 63 (01): : 157 - 181
  • [8] ℓ-Divisibility of ℓ-regular partition functions
    Brian Dandurand
    David Penniston
    The Ramanujan Journal, 2009, 19 : 63 - 70
  • [9] a""-Divisibility of a""-regular partition functions
    Dandurand, Brian
    Penniston, David
    RAMANUJAN JOURNAL, 2009, 19 (01): : 63 - 70
  • [10] On the parity of partition functions
    Nicolas, JL
    Sarkozy, A
    ILLINOIS JOURNAL OF MATHEMATICS, 1995, 39 (04) : 586 - 597