共 50 条
Identities on mex-related partitions
被引:0
|作者:
Jane Y. X. Yang
Li Zhou
机构:
[1] Chongqing University of Posts and Telecommunications,School of Science
来源:
关键词:
Partition;
Mex-function;
Congruence;
Involution;
05A15;
05A17;
05A19;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
The minimal excludant, or mex-function, on a set of positive integers is the smallest positive integer not in it. Andrews and Newman defined the mex-function mexA,a(λ)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\text{ mex}_{A,a}(\lambda )$$\end{document} to be the smallest positive integer congruent to a modulo A that is not part of partition λ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\lambda $$\end{document}, and denote by pA,a(n)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$p_{A,a}(n)$$\end{document} (reps. p¯A,a(n)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\overline{p}_{A,a}(n)$$\end{document}) the number of partitions λ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\lambda $$\end{document} of n satisfying mexA,a(λ)≡a(reps.a+A)(mod2A),\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\text{ mex}_{A,a}(\lambda )\equiv a \text{(reps. } a+A{\text{) } }\pmod {2A},$$\end{document} and found numerous surprising identities involving these functions. Motivated by the above results, in this paper, we prove that the number of the partitions of n with an even (resp. odd) number of even parts equals the mex-function p4,2(n)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$p_{4,2}(n)$$\end{document} (reps. p¯4,2(n)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\overline{p}_{4,2}(n)$$\end{document}). We also derive several identities connecting the differences of two mex-functions with partitions restricted by certain congruences, which develops the work of Dhar, Mukhopadhyay, and Sarma. Furthermore, we extend the mex-function to overpartitions and study the relevant properties.
引用
收藏
页码:157 / 181
页数:24
相关论文