Inverse boundary spectral problem for Riemannian polyhedra

被引:0
|
作者
Anna Kirpichnikova
Yaroslav Kurylev
机构
[1] University of Glasgow,School of Mathematics and Statistics
[2] University College London,Department of Mathematics
来源
Mathematische Annalen | 2012年 / 354卷
关键词
Inverse Problem; Gaussian Beam; Simplicial Complex; Transmission Condition; Jump Discontinuity;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a Riemannian polyhedron of a special type with a piecewise smooth boundary. The associated Neumann Laplacian defines the boundary spectral data as the set of eigenvalues and restrictions to the boundary of the corresponding eigenfunctions. In this paper we prove that the boundary spectral data prescribed on an open subset of the polyhedron boundary determine this polyhedron uniquely, i.e. up to an isometry.
引用
收藏
页码:1003 / 1028
页数:25
相关论文
共 50 条
  • [21] Boundary spectral inverse problem on a class of graphs (trees) by the BC method
    Belishev, MI
    [J]. INVERSE PROBLEMS, 2004, 20 (03) : 647 - 672
  • [22] Inverse Sturm-Liouville Problem with Spectral Parameter in the Boundary Conditions
    Bondarenko, Natalia P.
    Chitorkin, Egor E.
    [J]. MATHEMATICS, 2023, 11 (05)
  • [23] Inverse Nodal Problem for Dirac System with Spectral Parameter in Boundary Conditions
    Yang, Chuan Fu
    Pivovarchik, Vyacheslav N.
    [J]. COMPLEX ANALYSIS AND OPERATOR THEORY, 2013, 7 (04) : 1211 - 1230
  • [24] Inverse Sturm–Liouville problem with spectral polynomials in nonsplitting boundary conditions
    V. A. Sadovnichii
    Ya. T. Sultanaev
    A. M. Akhtyamov
    [J]. Differential Equations, 2017, 53 : 47 - 55
  • [25] ON HALF INVERSE PROBLEM FOR DIFFERENTIAL PENCILS WITH THE SPECTRAL PARAMETER IN BOUNDARY CONDITIONS
    Buterin, S. A.
    [J]. TAMKANG JOURNAL OF MATHEMATICS, 2011, 42 (03): : 355 - 364
  • [26] Mass and Riemannian polyhedra *
    Miao, Pengzi
    Piubello, Annachiara
    [J]. ADVANCES IN MATHEMATICS, 2022, 400
  • [27] INVERSE SPECTRAL PROBLEM
    CHEUNG, SM
    HOCHSTADT, H
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1975, 12 (03) : 215 - 222
  • [28] On an inverse spectral problem
    Yu. V. Egorov
    [J]. Russian Journal of Mathematical Physics, 2017, 24 : 195 - 206
  • [29] On an inverse spectral problem
    Egorov, Yu. V.
    [J]. RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2017, 24 (02) : 195 - 206
  • [30] An inverse problem for the Riemannian minimal surface equation
    Carstea, Catalin I.
    Lassas, Matti
    Liimatainen, Tony
    Oksanen, Lauri
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 379 : 626 - 648