An inverse problem for the Riemannian minimal surface equation

被引:2
|
作者
Carstea, Catalin I. [1 ]
Lassas, Matti [2 ]
Liimatainen, Tony [2 ]
Oksanen, Lauri [2 ]
机构
[1] Natl Yang Ming Chiao Tung Univ, Dept Appl Math, Hsinchu, Taiwan
[2] Univ Helsinki, Dept Math & Stat, Helsinki, Finland
基金
芬兰科学院;
关键词
Inverse problems; Quasilinear elliptic equation; Riemannian manifold; Riemannian surface; Minimal surface; Higher order linearization; GLOBAL UNIQUENESS; CONDUCTIVITIES;
D O I
10.1016/j.jde.2023.10.039
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we consider determining a minimal surface embedded in a Riemannian manifold E x R. We show that if E is a two dimensional Riemannian manifold with boundary, then the knowledge of the associated Dirichlet-to-Neumann map for the minimal surface equation determine E up to an isometry. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:626 / 648
页数:23
相关论文
共 50 条