A new method for multiancestry polygenic prediction improves performance across diverse populations

被引:27
|
作者
Zhang H. [1 ,2 ]
Zhan J. [3 ]
Jin J. [4 ,5 ]
Zhang J. [4 ]
Lu W. [6 ]
Zhao R. [4 ]
Ahearn T.U. [1 ]
Yu Z. [7 ]
O’Connell J. [3 ]
Jiang Y. [3 ]
Chen T. [2 ]
Okuhara D. [8 ]
Aslibekyan S. [3 ]
Auton A. [3 ]
Babalola E. [3 ]
Bell R.K. [3 ]
Bielenberg J. [3 ]
Bryc K. [3 ]
Bullis E. [3 ]
Coker D. [3 ]
Partida G.C. [3 ]
Dhamija D. [3 ]
Das S. [3 ]
Elson S.L. [3 ]
Eriksson N. [3 ]
Filshtein T. [3 ]
Fitch A. [3 ]
Fletez-Brant K. [3 ]
Fontanillas P. [3 ]
Freyman W. [3 ]
Granka J.M. [3 ]
Heilbron K. [3 ]
Hernandez A. [3 ]
Hicks B. [3 ]
Hinds D.A. [3 ]
Jewett E.M. [3 ]
Kukar K. [3 ]
Kwong A. [3 ]
Lin K.-H. [3 ]
Llamas B.A. [3 ]
Lowe M. [3 ]
McCreight J.C. [3 ]
McIntyre M.H. [3 ]
Micheletti S.J. [3 ]
Moreno M.E. [3 ]
Nandakumar P. [3 ]
Nguyen D.T. [3 ]
Noblin E.S. [3 ]
Petrakovitz A.A. [3 ]
Poznik G.D. [3 ]
机构
[1] Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
[2] Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
[3] 23andMe, Inc., Sunnyvale, CA
[4] Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
[5] Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA
[6] Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD
[7] Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
[8] Booz Allen Hamilton Inc., McLean, VA
[9] Division of Genetics and Epidemiology, Institute of Cancer Research, London
[10] Department of Statistics, Harvard University, Cambridge, MA
[11] Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD
基金
美国国家卫生研究院;
关键词
D O I
10.1038/s41588-023-01501-z
中图分类号
学科分类号
摘要
Polygenic risk scores (PRSs) increasingly predict complex traits; however, suboptimal performance in non-European populations raise concerns about clinical applications and health inequities. We developed CT-SLEB, a powerful and scalable method to calculate PRSs, using ancestry-specific genome-wide association study summary statistics from multiancestry training samples, integrating clumping and thresholding, empirical Bayes and superlearning. We evaluated CT-SLEB and nine alternative methods with large-scale simulated genome-wide association studies (~19 million common variants) and datasets from 23andMe, Inc., the Global Lipids Genetics Consortium, All of Us and UK Biobank, involving 5.1 million individuals of diverse ancestry, with 1.18 million individuals from four non-European populations across 13 complex traits. Results demonstrated that CT-SLEB significantly improves PRS performance in non-European populations compared with simple alternatives, with comparable or superior performance to a recent, computationally intensive method. Moreover, our simulation studies offered insights into sample size requirements and SNP density effects on multiancestry risk prediction. © 2023, The Author(s), under exclusive licence to Springer Nature America, Inc.
引用
收藏
页码:1757 / 1768
页数:11
相关论文
共 50 条
  • [41] Caregiving Across Diverse Populations: New Evidence From the National Study of Caregiving and Hispanic EPESE
    Rote, Sunshine M.
    Angel, Jacqueline L.
    Moon, Heehyul
    Markides, Kyriakos
    INNOVATION IN AGING, 2019, 3 (02)
  • [42] Microbiome in Brain Health and Diseases Across the Lifespan: Exciting New Directions for Integrative Research in Diverse Populations
    Jeste, Dilip
    Dickerson, Faith
    Paulus, Martin
    Hsiao, Elaine
    Nguyen, Tanya
    Godoy-Vitorino, Filipa
    Tomas, Adrian Pinto
    Kelly, Deanna
    Krajmalnik-Brown, Rosa
    NEUROPSYCHOPHARMACOLOGY, 2021, 46 (SUPPL 1) : 37 - 38
  • [43] Human Demographic History Impacts Genetic Risk Prediction across Diverse Populations (vol 100, pg 635, 2017)
    Martin, Alicia R.
    Gignoux, Christopher R.
    Walters, Raymond K.
    Wojcik, Genevieve L.
    Neale, Benjamin M.
    Gravel, Simon
    Daly, Mark J.
    Bustamante, Carlos D.
    Kenny, Eimear E.
    AMERICAN JOURNAL OF HUMAN GENETICS, 2020, 107 (04) : 788 - 789
  • [44] A NEW METHOD FOR THE EVALUATION AND PREDICTION OF BASE STEALING PERFORMANCE
    Bricker, Joshua C.
    Bailey, Christopher A.
    Driggers, Austin R.
    McInnis, Timothy C.
    Alami, Arya
    JOURNAL OF STRENGTH AND CONDITIONING RESEARCH, 2016, 30 (11) : 3044 - 3050
  • [45] A new method to find neighbor users that improves the performance of Collaborative Filtering
    Koohi, Hamidreza
    Kiani, Kourosh
    EXPERT SYSTEMS WITH APPLICATIONS, 2017, 83 : 30 - 39
  • [46] Proteomic Analyses in Diverse Populations Improved Risk Prediction and Identified New Drug Targets for Type 2 Diabetes
    Yao, Pang
    Iona, Andri
    Pozarickij, Alfred
    Said, Saredo
    Wright, Neil
    Lin, Kuang
    Millwood, Iona
    Fry, Hannah
    Kartsonaki, Christiana
    Mazidi, Mohsen
    Chen, Yiping
    Bragg, Fiona
    Liu, Bowen
    Yang, Ling
    Liu, Junxi
    Avery, Daniel
    Schmidt, Dan
    Sun, Dianjianyi
    Pei, Pei
    Lv, Jun
    Yu, Canqing
    Hill, Michael
    Bennett, Derrick
    Walters, Robin
    Li, Liming
    Clarke, Robert
    Du, Huaidong
    Chen, Zhengming
    DIABETES CARE, 2024, 47 (06) : 1012 - 1019
  • [47] A new polygenic score for refractive error improves detection of children at risk of high myopia but not the prediction of those at risk of myopic macular degeneration
    Clark, Rosie
    Lee, Samantha Sze-Yee
    Du, Ran
    Wang, Yining
    Kneepkens, Sander C. M.
    Charng, Jason
    Huang, Yu
    Hunter, Michael L.
    Jiang, Chen
    Tideman, J. Willem L.
    Melles, Ronald B.
    Klaver, Caroline C. W.
    Mackey, David A.
    Williams, Cathy
    Choquet, Helene
    Ohno-Matsui, Kyoko
    Guggenheim, Jeremy A.
    EBIOMEDICINE, 2023, 91
  • [48] A new performance related test method for rutting prediction: MSCRT
    Dreessen, S.
    Planche, J. P.
    Gardel, V.
    ADVANCED TESTING AND CHARACTERISATION OF BITUMINOUS MATERIALS, VOLS 1 AND 2, 2009, : 971 - +
  • [49] The performance of diabetes risk prediction models in new populations: the role of ethnicity of the development cohort
    Stephanie K. Tanamas
    Dianna J. Magliano
    Beverley Balkau
    Jaakko Tuomilehto
    Sudhir Kowlessur
    Stefan Söderberg
    Paul Z. Zimmet
    Jonathan E. Shaw
    Acta Diabetologica, 2015, 52 : 91 - 101
  • [50] The performance of diabetes risk prediction models in new populations: the role of ethnicity of the development cohort
    Tanamas, Stephanie K.
    Magliano, Dianna J.
    Balkau, Beverley
    Tuomilehto, Jaakko
    Kowlessur, Sudhir
    Soederberg, Stefan
    Zimmet, Paul Z.
    Shaw, Jonathan E.
    ACTA DIABETOLOGICA, 2015, 52 (01) : 91 - 101