A new method for multiancestry polygenic prediction improves performance across diverse populations

被引:27
|
作者
Zhang H. [1 ,2 ]
Zhan J. [3 ]
Jin J. [4 ,5 ]
Zhang J. [4 ]
Lu W. [6 ]
Zhao R. [4 ]
Ahearn T.U. [1 ]
Yu Z. [7 ]
O’Connell J. [3 ]
Jiang Y. [3 ]
Chen T. [2 ]
Okuhara D. [8 ]
Aslibekyan S. [3 ]
Auton A. [3 ]
Babalola E. [3 ]
Bell R.K. [3 ]
Bielenberg J. [3 ]
Bryc K. [3 ]
Bullis E. [3 ]
Coker D. [3 ]
Partida G.C. [3 ]
Dhamija D. [3 ]
Das S. [3 ]
Elson S.L. [3 ]
Eriksson N. [3 ]
Filshtein T. [3 ]
Fitch A. [3 ]
Fletez-Brant K. [3 ]
Fontanillas P. [3 ]
Freyman W. [3 ]
Granka J.M. [3 ]
Heilbron K. [3 ]
Hernandez A. [3 ]
Hicks B. [3 ]
Hinds D.A. [3 ]
Jewett E.M. [3 ]
Kukar K. [3 ]
Kwong A. [3 ]
Lin K.-H. [3 ]
Llamas B.A. [3 ]
Lowe M. [3 ]
McCreight J.C. [3 ]
McIntyre M.H. [3 ]
Micheletti S.J. [3 ]
Moreno M.E. [3 ]
Nandakumar P. [3 ]
Nguyen D.T. [3 ]
Noblin E.S. [3 ]
Petrakovitz A.A. [3 ]
Poznik G.D. [3 ]
机构
[1] Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
[2] Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
[3] 23andMe, Inc., Sunnyvale, CA
[4] Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
[5] Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA
[6] Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD
[7] Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
[8] Booz Allen Hamilton Inc., McLean, VA
[9] Division of Genetics and Epidemiology, Institute of Cancer Research, London
[10] Department of Statistics, Harvard University, Cambridge, MA
[11] Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD
基金
美国国家卫生研究院;
关键词
D O I
10.1038/s41588-023-01501-z
中图分类号
学科分类号
摘要
Polygenic risk scores (PRSs) increasingly predict complex traits; however, suboptimal performance in non-European populations raise concerns about clinical applications and health inequities. We developed CT-SLEB, a powerful and scalable method to calculate PRSs, using ancestry-specific genome-wide association study summary statistics from multiancestry training samples, integrating clumping and thresholding, empirical Bayes and superlearning. We evaluated CT-SLEB and nine alternative methods with large-scale simulated genome-wide association studies (~19 million common variants) and datasets from 23andMe, Inc., the Global Lipids Genetics Consortium, All of Us and UK Biobank, involving 5.1 million individuals of diverse ancestry, with 1.18 million individuals from four non-European populations across 13 complex traits. Results demonstrated that CT-SLEB significantly improves PRS performance in non-European populations compared with simple alternatives, with comparable or superior performance to a recent, computationally intensive method. Moreover, our simulation studies offered insights into sample size requirements and SNP density effects on multiancestry risk prediction. © 2023, The Author(s), under exclusive licence to Springer Nature America, Inc.
引用
收藏
页码:1757 / 1768
页数:11
相关论文
共 50 条
  • [21] Polygenic prediction across populations is influenced by ancestry, genetic architecture, and methodology
    Wang, Ying
    Kanai, Masahiro
    Tan, Taotao
    Kamariza, Mireille
    Tsuo, Kristin
    Yuan, Kai
    Zhou, Wei
    Okada, Yukinori
    Huang, Hailiang
    Turley, Patrick
    Atkinson, Elizabeth G.
    Martin, Alicia R.
    CELL GENOMICS, 2023, 3 (10):
  • [22] Analysis of polygenic risk score usage and performance in diverse human populations
    L. Duncan
    H. Shen
    B. Gelaye
    J. Meijsen
    K. Ressler
    M. Feldman
    R. Peterson
    B. Domingue
    Nature Communications, 10
  • [23] Inclusion of variants discovered from diverse populations improves polygenic risk score transferability
    Cavazos, Taylor B.
    Witte, John S.
    HUMAN GENETICS AND GENOMICS ADVANCES, 2021, 2 (01):
  • [24] Risk factors affecting polygenic score performance across diverse cohorts
    Hui, Daniel
    Dudek, Scott
    Kiryluk, Krzysztof
    Walunas, Theresa L.
    Kullo, Iftikhar J.
    Wei, Wei-Qi
    Tiwari, Hemant
    Peterson, Josh F.
    Chung, Wendy K.
    Davis, Brittney H.
    Khan, Atlas
    Kottyan, Leah C.
    Limdi, Nita A.
    Feng, Qiping
    Puckelwartz, Megan J.
    Weng, Chunhua
    Smith, Johanna L.
    Karlson, Elizabeth W.
    Jarvik, Gail P.
    Ritchie, Marylyn D.
    ELIFE, 2025, 12
  • [25] Using Local Genetic Correlation Improves Polygenic Score Prediction Across Traits
    Pain, Oliver
    Lewis, Cathryn M.
    HUMAN HEREDITY, 2022, VOL. (SUPPL 1) : 29 - 30
  • [26] Improving polygenic prediction in ancestrally diverse populations (vol 54, pg 573, 2022)
    Ruan, Yunfeng
    Lin, Yen-Feng
    Feng, Yen-Chen Anne
    Chen, Chia-Yen
    Lam, Max
    Guo, Zhenglin
    He, Lin
    Sawa, Akira
    Martin, Alicia R.
    Qin, Shengying
    Huang, Hailiang
    Ge, Tian
    NATURE GENETICS, 2022, 54 (08) : 1259 - 1259
  • [27] Integrating Polygenic Risk Scores into clinical breast cancer models improves prediction in diverse cohorts
    Bolli, Alessandro
    Kulm, Scott
    Kintzle, Jen
    Di Domenico, Paolo
    Botta, Giordano
    Busby, George
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2024, 32 : 54 - 55
  • [28] Performance of polygenic risk scores for cancer prediction in a racially diverse academic biobank
    Wang, Louise
    Desai, Heena
    Verma, Shefali S.
    Le, Anh
    Hausler, Ryan
    Verma, Anurag
    Judy, Renae
    Doucette, Abigail
    Gabriel, Peter E.
    Nathanson, Katherine L.
    Damrauer, Scott M.
    Mowery, Danielle L.
    Ritchie, Marylyn D.
    Kember, Rachel L.
    Maxwell, Kara N.
    GENETICS IN MEDICINE, 2022, 24 (03) : 601 - 609
  • [29] Genomic prediction of switchgrass winter survivorship across diverse lowland populations
    Tilhou, Neal W.
    Poudel, Hari P.
    Lovell, John
    Mamidi, Sujan
    Schmutz, Jeremy
    Daum, Christopher
    Zane, Matthew
    Yoshinaga, Yuko
    Lipzen, Anna
    Casler, Michael D.
    G3-GENES GENOMES GENETICS, 2023, 13 (03):
  • [30] Human Demographic History Impacts Genetic Risk Prediction across Diverse Populations
    Martin, Alicia R.
    Gignoux, Christopher R.
    Walters, Raymond K.
    Wojcik, Genevieve L.
    Neale, Benjamin M.
    Gravel, Simon
    Daly, Mark J.
    Bustamante, Carlos D.
    Kenny, Eimear E.
    AMERICAN JOURNAL OF HUMAN GENETICS, 2017, 100 (04) : 635 - 649