A new method for multiancestry polygenic prediction improves performance across diverse populations

被引:27
|
作者
Zhang H. [1 ,2 ]
Zhan J. [3 ]
Jin J. [4 ,5 ]
Zhang J. [4 ]
Lu W. [6 ]
Zhao R. [4 ]
Ahearn T.U. [1 ]
Yu Z. [7 ]
O’Connell J. [3 ]
Jiang Y. [3 ]
Chen T. [2 ]
Okuhara D. [8 ]
Aslibekyan S. [3 ]
Auton A. [3 ]
Babalola E. [3 ]
Bell R.K. [3 ]
Bielenberg J. [3 ]
Bryc K. [3 ]
Bullis E. [3 ]
Coker D. [3 ]
Partida G.C. [3 ]
Dhamija D. [3 ]
Das S. [3 ]
Elson S.L. [3 ]
Eriksson N. [3 ]
Filshtein T. [3 ]
Fitch A. [3 ]
Fletez-Brant K. [3 ]
Fontanillas P. [3 ]
Freyman W. [3 ]
Granka J.M. [3 ]
Heilbron K. [3 ]
Hernandez A. [3 ]
Hicks B. [3 ]
Hinds D.A. [3 ]
Jewett E.M. [3 ]
Kukar K. [3 ]
Kwong A. [3 ]
Lin K.-H. [3 ]
Llamas B.A. [3 ]
Lowe M. [3 ]
McCreight J.C. [3 ]
McIntyre M.H. [3 ]
Micheletti S.J. [3 ]
Moreno M.E. [3 ]
Nandakumar P. [3 ]
Nguyen D.T. [3 ]
Noblin E.S. [3 ]
Petrakovitz A.A. [3 ]
Poznik G.D. [3 ]
机构
[1] Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
[2] Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
[3] 23andMe, Inc., Sunnyvale, CA
[4] Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
[5] Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA
[6] Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD
[7] Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
[8] Booz Allen Hamilton Inc., McLean, VA
[9] Division of Genetics and Epidemiology, Institute of Cancer Research, London
[10] Department of Statistics, Harvard University, Cambridge, MA
[11] Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD
基金
美国国家卫生研究院;
关键词
D O I
10.1038/s41588-023-01501-z
中图分类号
学科分类号
摘要
Polygenic risk scores (PRSs) increasingly predict complex traits; however, suboptimal performance in non-European populations raise concerns about clinical applications and health inequities. We developed CT-SLEB, a powerful and scalable method to calculate PRSs, using ancestry-specific genome-wide association study summary statistics from multiancestry training samples, integrating clumping and thresholding, empirical Bayes and superlearning. We evaluated CT-SLEB and nine alternative methods with large-scale simulated genome-wide association studies (~19 million common variants) and datasets from 23andMe, Inc., the Global Lipids Genetics Consortium, All of Us and UK Biobank, involving 5.1 million individuals of diverse ancestry, with 1.18 million individuals from four non-European populations across 13 complex traits. Results demonstrated that CT-SLEB significantly improves PRS performance in non-European populations compared with simple alternatives, with comparable or superior performance to a recent, computationally intensive method. Moreover, our simulation studies offered insights into sample size requirements and SNP density effects on multiancestry risk prediction. © 2023, The Author(s), under exclusive licence to Springer Nature America, Inc.
引用
收藏
页码:1757 / 1768
页数:11
相关论文
共 50 条
  • [1] Analysis of Polygenic Score Usage and Performance Across Diverse Human Populations
    Duncan, Laramie
    Shen, Hanyang
    Gelaye, Bizu
    Ressler, Kerry
    Feldman, Marcus
    Peterson, Roseann
    Domingue, Ben
    NEUROPSYCHOPHARMACOLOGY, 2018, 43 : S320 - S320
  • [2] PERFORMANCE OF POLYGENIC SCORES ACROSS ANCESTRALLY DIVERSE POPULATIONS: SCIENTIFIC AND ETHICAL CONSIDERATIONS
    Duncan, Laramie
    Shen, Hanyang
    Pritchard, Jonathan
    Feldman, Marcus
    Ressler, Kerry
    Harris, Kathleen
    Domingue, Ben
    EUROPEAN NEUROPSYCHOPHARMACOLOGY, 2019, 29 : S833 - S834
  • [3] Improving polygenic prediction in ancestrally diverse populations
    Yunfeng Ruan
    Yen-Feng Lin
    Yen-Chen Anne Feng
    Chia-Yen Chen
    Max Lam
    Zhenglin Guo
    Lin He
    Akira Sawa
    Alicia R. Martin
    Shengying Qin
    Hailiang Huang
    Tian Ge
    Nature Genetics, 2022, 54 : 573 - 580
  • [4] Improving polygenic prediction in ancestrally diverse populations
    Ruan, Yunfeng
    Lin, Yen-Feng
    Feng, Yen-Chen Anne
    Chen, Chia-Yen
    Lam, Max
    Guo, Zhenglin
    He, Lin
    Sawa, Akira
    Martin, Alicia R.
    Qin, Shengying
    Huang, Hailiang
    Ge, Tian
    NATURE GENETICS, 2022, 54 (05) : 573 - +
  • [5] Improving polygenic score prediction for coronary artery disease across populations of diverse ancestry
    Patel, Aniruddh P.
    Khera, Amit, V
    NATURE MEDICINE, 2023, 29 (07) : 1621 - 1622
  • [7] Enhancing polygenic risk prediction in diverse populations: opportunities and challenges
    Zhang, Haoyu
    Chatterjee, Nilanjan
    NATURE GENETICS, 2023, 55 (10) : 1621 - 1622
  • [9] Author Correction: Improving polygenic prediction in ancestrally diverse populations
    Yunfeng Ruan
    Yen-Feng Lin
    Yen-Chen Anne Feng
    Chia-Yen Chen
    Max Lam
    Zhenglin Guo
    Lin He
    Akira Sawa
    Alicia R. Martin
    Shengying Qin
    Hailiang Huang
    Tian Ge
    Nature Genetics, 2022, 54 : 1259 - 1259
  • [10] Calibrated prediction intervals for polygenic scores across diverse contexts
    Hou, Kangcheng
    Xu, Ziqi
    Ding, Yi
    Mandla, Ravi
    Shi, Zhuozheng
    Boulier, Kristin
    Harpak, Arbel
    Pasaniuc, Bogdan
    NATURE GENETICS, 2024, 56 (07) : 1386 - 1396