Superadditivity of convex integral transform for positive operators in Hilbert spaces

被引:0
|
作者
Silvestru Sever Dragomir
机构
[1] Victoria University,Mathematics, College of Engineering and Science
[2] University of the Witwatersrand,DST
关键词
Operator monotone functions; Operator convex functions; Operator inequalities; Löwner–Heinz inequality; Logarithmic operator inequalities; 47A63; 47A60;
D O I
暂无
中图分类号
学科分类号
摘要
For a continuous and positive function wλ,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w\left( \lambda \right) ,$$\end{document}λ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda >0$$\end{document} and μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} a positive measure on (0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(0,\infty )$$\end{document} we consider the following convexintegral transformCw,μT:=∫0∞wλT2λ+T-1dμλ,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \mathcal {C}\left( w,\mu \right) \left( T\right) :=\int _{0}^{\infty }w\left( \lambda \right) T^{2}\left( \lambda +T\right) ^{-1}d\mu \left( \lambda \right) , \end{aligned}$$\end{document}where the integral is assumed to exist for T a positive operator on a complex Hilbert space H. We show among other that, for all A,  B>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B>0$$\end{document} with BA+AB≥0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$BA+AB\ge 0,$$\end{document}C(w,μ)A+B≥C(w,μ)A+C(w,μ)B.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \mathcal {C}(w,\mu )\left( A+B\right) \ge \mathcal {C}(w,\mu )\left( A\right) +\mathcal {C}(w,\mu )\left( B\right) . \end{aligned}$$\end{document}In particular, we have for r∈(0,1],\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r\in (0,1],$$\end{document} the power inequality A+Br+1≥Ar+1+Br+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left( A+B\right) ^{r+1}\ge A^{r+1}+B^{r+1} \end{aligned}$$\end{document}and the logarithmic inequality A+BlnA+B≥AlnA+BlnB.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left( A+B\right) \ln \left( A+B\right) \ge A\ln A+B\ln B. \end{aligned}$$\end{document}Some examples for operator monotone and operator convex functions and integral transforms C·,·\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {C}\left( \cdot ,\cdot \right) $$\end{document} related to the exponential and logarithmic functions are also provided.
引用
收藏
相关论文
共 50 条
  • [41] AREA INTEGRAL FUNCTIONS AND H∞ FUNCTIONAL CALCULUS FOR SECTORIAL OPERATORS ON HILBERT SPACES
    Chen, Zeqian
    Sun, Mu
    ACTA MATHEMATICA SCIENTIA, 2013, 33 (04) : 989 - 997
  • [42] AREA INTEGRAL FUNCTIONS AND H∞ FUNCTIONAL CALCULUS FOR SECTORIAL OPERATORS ON HILBERT SPACES
    陈泽乾
    孙牧
    Acta Mathematica Scientia, 2013, 33 (04) : 989 - 997
  • [43] Bounds of Different Integral Operators in Tensorial Hilbert and Variable Exponent Function Spaces
    Afzal, Waqar
    Abbas, Mujahid
    Alsalami, Omar Mutab
    MATHEMATICS, 2024, 12 (16)
  • [44] Hilbert–Schmidt Frames for Operators on Hilbert Spaces
    Farkhondeh Takhteh
    Morteza Mirzaee Azandaryani
    Iranian Journal of Science, 2023, 47 : 1679 - 1687
  • [45] On symmetrizable operators on Hilbert spaces
    Mokhtar-Kharroubi, Hocine
    Mokhtar-Kharroubi, Mustapha
    ACTA APPLICANDAE MATHEMATICAE, 2008, 102 (01) : 1 - 24
  • [46] Definable Operators on Hilbert Spaces
    Goldbring, Isaac
    NOTRE DAME JOURNAL OF FORMAL LOGIC, 2012, 53 (02) : 193 - 201
  • [47] On differential operators in Hilbert spaces
    Friedrichs, K
    AMERICAN JOURNAL OF MATHEMATICS, 1939, 61 : 523 - 544
  • [48] AMENABLE OPERATORS ON HILBERT SPACES
    Ji, You Qing
    Shi, Luo Yi
    HOUSTON JOURNAL OF MATHEMATICS, 2012, 38 (04): : 1165 - 1183
  • [49] On Symmetrizable Operators on Hilbert Spaces
    Hocine Mokhtar-Kharroubi
    Mustapha Mokhtar-Kharroubi
    Acta Applicandae Mathematicae, 2008, 102 : 1 - 24
  • [50] μ-HANKEL OPERATORS ON HILBERT SPACES
    Mirotin, Adolf
    Kuzmenkova, Ekaterina
    OPUSCULA MATHEMATICA, 2021, 41 (06) : 881 - 898