Superadditivity of convex integral transform for positive operators in Hilbert spaces

被引:0
|
作者
Silvestru Sever Dragomir
机构
[1] Victoria University,Mathematics, College of Engineering and Science
[2] University of the Witwatersrand,DST
关键词
Operator monotone functions; Operator convex functions; Operator inequalities; Löwner–Heinz inequality; Logarithmic operator inequalities; 47A63; 47A60;
D O I
暂无
中图分类号
学科分类号
摘要
For a continuous and positive function wλ,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w\left( \lambda \right) ,$$\end{document}λ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda >0$$\end{document} and μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} a positive measure on (0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(0,\infty )$$\end{document} we consider the following convexintegral transformCw,μT:=∫0∞wλT2λ+T-1dμλ,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \mathcal {C}\left( w,\mu \right) \left( T\right) :=\int _{0}^{\infty }w\left( \lambda \right) T^{2}\left( \lambda +T\right) ^{-1}d\mu \left( \lambda \right) , \end{aligned}$$\end{document}where the integral is assumed to exist for T a positive operator on a complex Hilbert space H. We show among other that, for all A,  B>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B>0$$\end{document} with BA+AB≥0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$BA+AB\ge 0,$$\end{document}C(w,μ)A+B≥C(w,μ)A+C(w,μ)B.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \mathcal {C}(w,\mu )\left( A+B\right) \ge \mathcal {C}(w,\mu )\left( A\right) +\mathcal {C}(w,\mu )\left( B\right) . \end{aligned}$$\end{document}In particular, we have for r∈(0,1],\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r\in (0,1],$$\end{document} the power inequality A+Br+1≥Ar+1+Br+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left( A+B\right) ^{r+1}\ge A^{r+1}+B^{r+1} \end{aligned}$$\end{document}and the logarithmic inequality A+BlnA+B≥AlnA+BlnB.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left( A+B\right) \ln \left( A+B\right) \ge A\ln A+B\ln B. \end{aligned}$$\end{document}Some examples for operator monotone and operator convex functions and integral transforms C·,·\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {C}\left( \cdot ,\cdot \right) $$\end{document} related to the exponential and logarithmic functions are also provided.
引用
收藏
相关论文
共 50 条
  • [21] Separability for Positive Operators on Tensor Product of Hilbert Spaces
    Jin Chuan HOU
    Jin Fei CHAI
    ActaMathematicaSinica,EnglishSeries, 2021, (06) : 893 - 910
  • [22] Separability for Positive Operators on Tensor Product of Hilbert Spaces
    Hou, Jin Chuan
    Chai, Jin Fei
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2021, 37 (06) : 893 - 910
  • [23] Kantorovich inequality for positive operators on quaternionic Hilbert spaces
    Preeti Dharmarha
    The Journal of Analysis, 2024, 32 : 993 - 1007
  • [24] Fixed point results for decreasing convex orbital operators in Hilbert spaces
    Adrian Petruşel
    Gabriela Petruşel
    Journal of Fixed Point Theory and Applications, 2021, 23
  • [25] Fixed point results for decreasing convex orbital operators in Hilbert spaces
    Petrusel, Adrian
    Petrusel, Gabriela
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2021, 23 (03)
  • [26] Condensing Operators of Integral Type in Busemann Reflexive Convex Spaces
    Moosa Gabeleh
    Hans-Peter A. Künzi
    Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43 : 1971 - 1988
  • [27] Condensing Operators of Integral Type in Busemann Reflexive Convex Spaces
    Gabeleh, Moosa
    Kunzi, Hans-Peter A.
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (02) : 1971 - 1988
  • [28] Operators in Hilbert Spaces
    Fragoulopoulou, Maria
    Trapani, Camillo
    LOCALLY CONVEX QUASI *-ALGEBRAS AND THEIR REPRESENTATIONS, 2020, 2257 : 237 - 248
  • [29] Extension and integral representation of the finite Hilbert transform in rearrangement invariant spaces
    Curbera, Guillermo P.
    Okada, Susumu
    Ricker, Werner J.
    QUAESTIONES MATHEMATICAE, 2020, 43 (5-6) : 783 - 812
  • [30] Log-Hilbert-Schmidt metric between positive definite operators on Hilbert spaces
    Minh, Ha Quang
    San Biagio, Marco
    Murino, Vittorio
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 27 (NIPS 2014), 2014, 27