On initial value problems related to p-Laplacian and pseudo-Laplacian

被引:0
|
作者
Gabriella Bognár
Miklós Rontó
Nusrat Rajabov
机构
[1] Institute of Mathematics,
[2] University of Miskolc,undefined
[3] Institute of Mathematics,undefined
[4] University of Miskolc,undefined
[5] Academy of Sciences of Tajikistan,undefined
来源
Acta Mathematica Hungarica | 2005年 / 108卷
关键词
boundary value problem; singularity; nonlinear partial differential equation; system of differential equations; singular initial value problem; weak singularity; super singularity;
D O I
暂无
中图分类号
学科分类号
摘要
We establish some qualitative properties in the sense of weak singularity and super singularity for a certain system of two nonlinear differential equations related to the radially symmetric solution of p-Laplacian and pseudo-Laplacian problems. For the transformed system of differential equations we carry out the classification in the sense of weak singularity, singularity and super singularity. The choice of initial values at the point of singularity for correct settings of Cauchy problem is also considered.
引用
收藏
页码:1 / 12
页数:11
相关论文
共 50 条
  • [41] The dual eigenvalue problems for p-Laplacian
    Yan-Hsiou Cheng
    Wei-Cheng Lian
    Wei-Chuan Wang
    Acta Mathematica Hungarica, 2014, 142 : 132 - 151
  • [42] Implicit Elliptic Problems with p-Laplacian
    Cabanillas, L. E.
    Luque, J., V
    ARMENIAN JOURNAL OF MATHEMATICS, 2024, 16 (12): : 1 - 10
  • [43] Limit of p-Laplacian obstacle problems
    Capitanelli, Raffaela
    Vivaldi, Maria Agostina
    ADVANCES IN CALCULUS OF VARIATIONS, 2022, 15 (02) : 265 - 286
  • [44] Galerkin Approximations in Problems with p-Laplacian
    Zhikov V.V.
    Yakubovich D.A.
    Journal of Mathematical Sciences, 2016, 219 (1) : 99 - 111
  • [45] Asymmetric critical p-Laplacian problems
    Perera, Kanishka
    Yang, Yang
    Zhang, Zhitao
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2018, 57 (05)
  • [46] Asymmetric critical p-Laplacian problems
    Kanishka Perera
    Yang Yang
    Zhitao Zhang
    Calculus of Variations and Partial Differential Equations, 2018, 57
  • [47] A multiplicity theorem for problems with the p-Laplacian
    Motreanu, D.
    Motreanu, V. V.
    Papageorgiou, N. S.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (04) : 1016 - 1027
  • [48] OPTIMIZATION IN PROBLEMS INVOLVING THE P-LAPLACIAN
    Marras, Monica
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2010,
  • [49] Resonance problems for the p-Laplacian systems
    Ou, Zeng-Qi
    Tang, Chun-Lei
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 345 (01) : 511 - 521
  • [50] Nonhomogeneous Dirichlet problems for the p-Laplacian
    De Figueiredo, Djairo G.
    Gossez, Jean-Pierre
    Ubilla, Pedro
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2017, 56 (02)