A multiplicity theorem for problems with the p-Laplacian

被引:12
|
作者
Motreanu, D. [1 ]
Motreanu, V. V. [1 ]
Papageorgiou, N. S. [2 ]
机构
[1] Univ Perpignan, Dept Math, F-66860 Perpignan, France
[2] Natl Tech Univ Athens, Dept Math, GR-15780 Athens, Greece
关键词
elliptic boundary value problem; p-Laplacian; multiple nontrivial solutions; operator of type (S)(+); degree map; weighted eigenvalue problem;
D O I
10.1016/j.na.2006.12.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider nonlinear elliptic equations driven by the p-Laplacian differential operator. Using degree theoretic arguments based on the degree map for operators of type (S)(+), we prove the existence of two nontrivial smooth solutions, one of which is of constant sign. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1016 / 1027
页数:12
相关论文
共 50 条
  • [1] A multiplicity theorem for problems with the p-Laplacian
    Papageorgiou, Evgenia H.
    Papageorgiou, Nikolaos S.
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 244 (01) : 63 - 77
  • [2] Multiplicity results for critical p-Laplacian problems
    Barletta, Giuseppina
    Candito, Pasquale
    Marano, Salvatore A.
    Perera, Kanishka
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 2017, 196 (04) : 1431 - 1440
  • [3] Multiplicity results for critical p-Laplacian problems
    Giuseppina Barletta
    Pasquale Candito
    Salvatore A. Marano
    Kanishka Perera
    [J]. Annali di Matematica Pura ed Applicata (1923 -), 2017, 196 : 1431 - 1440
  • [4] MULTIPLICITY THEOREMS FOR SEMIPOSITONE p-LAPLACIAN PROBLEMS
    Shang, Xudong
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2011,
  • [5] A multiplicity theorem for the Neumann p-Laplacian with an asymmetric nonsmooth potential
    Giuseppina Barletta
    Nikolaos S. Papageorgiou
    [J]. Journal of Global Optimization, 2007, 39 : 365 - 392
  • [6] Existence and Multiplicity of Solutions for p-Laplacian Neumann Problems
    Jiang, Qin
    Ma, Sheng
    Pasca, Daniel
    [J]. RESULTS IN MATHEMATICS, 2019, 74 (01)
  • [7] A multiplicity theorem for the Neumann p-Laplacian with an asymmetric nonsmooth potential
    Barletta, Giuseppina
    Papageorgiou, Nikolaos S.
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2007, 39 (03) : 365 - 392
  • [8] BIFURCATION AND MULTIPLICITY RESULTS FOR CRITICAL p-LAPLACIAN PROBLEMS
    Perera, Kanishka
    Squassina, Marco
    Yang, Yang
    [J]. TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2016, 47 (01) : 187 - 194
  • [9] Existence and multiplicity results for Dirichlet problems with p-Laplacian
    Jiu, QS
    Su, JB
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 281 (02) : 587 - 601
  • [10] New multiplicity results for critical p-Laplacian problems
    Mercuri, Carlo
    Perera, Kanishka
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2022, 283 (04)