Sharp observability inequalities for the 1-D plate equation with a potential

被引:0
|
作者
Xiaoyu Fu
机构
[1] Sichuan University,College of Mathematics
[2] Indian Institute of Technology,Department of Mathematics
关键词
Observability inequality; Plate equation; Point-wise estimate; Carleman estimate; 93B05; 93B07;
D O I
暂无
中图分类号
学科分类号
摘要
This paper deals with the problem of sharp observability inequality for the 1-D plate equation wtt + wxxxx + q(t, x)w = 0 with two types of boundary conditions w = wxx = 0 or w = wx = 0, and q(t, x) being a suitable potential. The author shows that the sharp observability constant is of order \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\exp \left( {C\left\| q \right\|_\infty ^{\tfrac{2} {7}} } \right)$$\end{document} for ‖q‖∞ ≥ 1. The main tools to derive the desired observability inequalities are the global Carleman inequalities, based on a new point wise inequality for the fourth order plate operator.
引用
收藏
页码:91 / 106
页数:15
相关论文
共 50 条
  • [31] A link between the cost of fast controls for the 1-D heat equation and the uniform controllability of a 1-D transport-diffusion equation
    Lissy, Pierre
    COMPTES RENDUS MATHEMATIQUE, 2012, 350 (11-12) : 591 - 595
  • [32] PI Controllers for 1-D Nonlinear Transport Equation
    Coron, Jean-Michel
    Hayat, Amaury
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2019, 64 (11) : 4570 - 4582
  • [33] NUMERICAL SIMULATIONS OF THE 1-D MODIFIED BURGERS EQUATION
    Robaina, Diogo T.
    Gonzaga de Oliveira, Sanderson L.
    Kischinhevsky, Mauricio
    Osthoff, Carla
    Sena, Alexandre C.
    2019 WINTER SIMULATION CONFERENCE (WSC), 2019, : 3231 - 3242
  • [34] Flatness for a strongly degenerate 1-D parabolic equation
    Iván Moyano
    Mathematics of Control, Signals, and Systems, 2016, 28
  • [35] Global attractor for the 1-D thin film equation
    Institute of Mathematics, Fudan University, 200433 Shanghai, China
    Asymptotic Anal, 2007, 2 (101-111):
  • [36] On the Metastability of the 1-d Allen-Cahn Equation
    Westdickenberg, Maria G.
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2021, 33 (04) : 1853 - 1879
  • [37] Robust output regulation of 1-d wave equation
    Guo, Bao-Zhu
    Meng, Tingting
    IFAC JOURNAL OF SYSTEMS AND CONTROL, 2021, 16
  • [38] Quadratic forms for the 1-D semilinear Schrodinger equation
    Kenig, CE
    Ponce, G
    Vega, L
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 348 (08) : 3323 - 3353
  • [39] Numerical solution of 1-D robust DMZ equation
    Yau, SST
    Jin, N
    Liu, Z
    PROCEEDINGS OF THE 2003 IEEE INTERNATIONAL SYMPOSIUM ON INTELLIGENT CONTROL, 2003, : 827 - 830