Quadratic forms for the 1-D semilinear Schrodinger equation

被引:117
|
作者
Kenig, CE
Ponce, G
Vega, L
机构
[1] UNIV CALIF SANTA BARBARA, DEPT MATH, SANTA BARBARA, CA 93106 USA
[2] UNIV BASQUE COUNTRY, DEPT MATEMAT, E-48080 BILBAO, SPAIN
关键词
Schrodinger equation; bilinear estimates; well-posedness;
D O I
10.1090/S0002-9947-96-01645-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is concerned with 1-D quadratic semilinear Schrodinger equations. We study local well posedness in classical Sobolev space H-s of the associated initial value problem and periodic boundary value problem. Our main interest is to obtain the lowest value of s which guarantees the desired local well posedness result. We prove that at least for the quadratic cases these values are negative and depend on the structure of the nonlinearity considered.
引用
收藏
页码:3323 / 3353
页数:31
相关论文
共 50 条
  • [1] Quadratic forms for a 2-D semilinear Schrodinger equation
    Staffilani, G
    DUKE MATHEMATICAL JOURNAL, 1997, 86 (01) : 79 - 107
  • [2] The initial value problem for the 1-D semilinear Schrodinger equation in Besov spaces
    Muramatu, T
    Taoka, S
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2004, 56 (03) : 853 - 888
  • [3] Local controllability of a 1-D Schrodinger equation
    Beauchard, K
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2005, 84 (07): : 851 - 956
  • [4] Quadratic forms and solutions of the Schrodinger equation
    AlNaggar, I
    Pearson, DB
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (20): : 6581 - 6594
  • [5] Global Nonnegative Controllability of the 1-D Semilinear Parabolic Equation
    Khapalov, Alexander Y.
    CONTROLLABILITY OF PARTIAL DIFFERENTIAL EQUATIONS GOVERNED BY MULTIPLICATIVE CONTROLS, 2010, 1995 : 15 - 31
  • [6] Rapid stabilization of a linearized bilinear 1-D Schrodinger equation
    Coron, Jean-Michel
    Gagnon, Ludovick
    Morancey, Morgan
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2018, 115 : 24 - 73
  • [7] UNIFORM BOUNDARY CONTROLLABILITY OF A DISCRETE 1-D SCHRODINGER EQUATION
    Hajjej, Z.
    Balegh, M.
    CARPATHIAN MATHEMATICAL PUBLICATIONS, 2015, 7 (02) : 259 - 270
  • [8] REDUCIBILITY OF 1-D SCHRODINGER EQUATION WITH UNBOUNDED OSCILLATION PERTURBATIONS
    Liang, Zhenguo
    Wang, Zhiqiang
    ISRAEL JOURNAL OF MATHEMATICS, 2023, 258 (01) : 287 - 338
  • [9] ON SHOOTING METHOD VARIATIONS FOR THE 1-D SCHRODINGER-EQUATION AND THEIR ACCURACY
    INDJIN, D
    IKONIC, Z
    MILANOVIC, V
    COMPUTER PHYSICS COMMUNICATIONS, 1992, 72 (2-3) : 149 - 153
  • [10] Solving the regulator problem for a 1-D Schrodinger equation via backstepping
    Zhou, Hua-Cheng
    Weiss, George
    IFAC PAPERSONLINE, 2017, 50 (01): : 4516 - 4521